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In the present Letter we show that the concept of the generalized synchronization regime
in discrete maps needs refining in the same way as it has been done for the flow systems
Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase
tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that,
in the general case, when the relationship between state vectors of the interacting chaotic
maps are considered, the prehistory must be taken into account. We extend the phase tube
approach to the systems with a discrete time coupled both unidirectionally and mutually
and analyze the essence of the generalized synchronization by means of this technique.
Obtained results show that the division of the generalized synchronization into the weak
and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps
and Hénon maps coupled mutually are used as sample systems.
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1. Introduction

Chaotic synchronization of nonlinear dynamical sys-
tems is an universal phenomenon having a large funda-
mental significance and different practical applications in
all fields of science and technique [1–3]. The presence of
synchronous behavior can be observed in different mathe-
matical, physical, sociological, physiological, biological and
other systems. There are a lot of types of chaotic synchro-
nization such as complete, phase, generalized, noise-in-
duced, lag and time scale synchronization.

One of the most interesting types of the synchronous
chaotic system behavior is the generalized synchronization
[4]. This type of chaotic synchronization is traditionally
introduced for two unidirectionally coupled flow chaotic
oscillators [4,5], spatially distributed media [6–8] or dis-
crete maps [9,10] and means the presence of the functional
relation between the drive and response system states. This
functional relation is supposed to be smooth or fractal [9],
although there are no technique to find the implicit form of
this relation (except for the complete and lag synchroniza-
. All rights reserved.
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tion regimes). In the framework of the existing concept ac-
cepted generally, the strong and weak types of the
generalized synchronization may be distinguished, accord-
ing to the properties of the functional relation. Strong syn-
chronization is assumed to correspond to the smooth map
between variables of the drive and response systems (this
regime is supposed to be observed in the case of complete
and lag synchronization), whereas the weak one means the
existence of a fractal map between them and can be de-
tected with the help of an auxiliary system approach [11].

Recently, we have refined the concept of generalized
synchronization in the flow systems and shown that the
state vectors of the interacting chaotic systems should be
considered as related with each other by the functional in-
stead of the functional relation [12]. We have also proposed
the phase tube approach explaining the essence of general-
ized synchronization and allowing the detection of the
generalized synchronization regime in many relevant
physical circumstances including bidirectionally coupled
chaotic oscillators [12].

Now, we have to make the next important step. The no-
tion of generalized synchronization has been introduced
for chaotic oscillators irrelatively of the type of the oscilla-
tors, it covers both the flow systems and discrete maps

http://dx.doi.org/10.1016/j.chaos.2012.10.004
mailto:moskalenko@nonlin.sgu.ru
http://dx.doi.org/10.1016/j.chaos.2012.10.004
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos


1 Except for B0(xN�K) = E, where E is the identity matrix.
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[9,10,13]. At the same time, the approach proposed in [12]
has been developed only for the flow systems. In the pres-
ent Letter we extend the phase tube approach on discrete
maps coupled both unidirectionally and mutually. As it
would be shown below, in the general case the relation be-
tween states of the interacting discrete maps being in the
generalized synchronization regime is analogous to the
functional (as it takes place in the flow systems). As a con-
sequence, the concepts of the weak and strong synchroni-
zation of chaos must also be reconsidered.

2. The theory of generalized synchronization for
discrete maps

First of all, based on the results of our previous work
[12] for the flow systems, we briefly describe the refined
theory of the generalized synchronization regime for the
discrete maps.

The definition of the generalized synchronization re-
gime generally accepted hitherto is the presence of a func-
tional relation

y ¼ F½x�; ð1Þ

between the drive x and response y oscillator states [4,9].
Obviously, Eq. (1), as applied to maps, should be written
in the form

yn ¼ F½xn�; ð2Þ

where xn and yn are the drive and response maps, respec-
tively. The evolution of the vectors xn and yn is determined
by

xnþ1 ¼ Hðxn;gxÞ;
ynþ1 ¼ Gðyn;gyÞ þ rPðxn; ynÞ;

ð3Þ

where H and G are the evolution operators of the consid-
ered discrete systems, gx and gy are the controlling param-
eter vectors, P denotes the coupling term and r is the
scalar coupling parameter. Without the lack of generality
we shall suppose below the identical dimension m of the
phase space of the drive and response systems.

In our work [12] we have shown for the flow systems
that F[�] in Eq. (1) should be considered as a functional
(contrary to a functional relation), that means that the sys-
tem state y(t) depends not only on the state of the drive
system x(t) but on the prehistory with the length s of the
drive oscillator x(s), t � s < s 6 t. From the theoretical point
of view, for two coupled flow systems the existence of the
functional relation (1) can be proven rigorously [14] only
for the unidirectional type of coupling, and, in the most
cases, this functional relation is not continuously differen-
tiable. As far as the mutual coupled flow systems are con-
cerned, the theoretical proof mentioned above becomes
inapplicable. The consideration of the generalized synchro-
nization of flow systems from the point of view of a func-
tional allows to avoid both the uncertainty of the
functional relation existence and the nondifferentiability
feature.

Since the flow systems may be reduced to the discrete
maps with the help of the of Poincaré secant approach
(see, e.g. [15]), the functional relation existence between
system states for the generalized synchronization regime
may be extended only for unidirectionally coupled invertible
maps, and, again, this functional relation is fractal (i.e., it is
not continuously differentiable) typically. As far as the
non-invertible and mutually coupled maps are concerned,
the existence of the functional relation does not seem to be
rigorously true. Therefore, having considered all men-
tioned above, one can come to conclusion that the prehis-
tory should be considered in the same way, as it had been
done for the flow systems [12]. In terms of the discrete
maps this circumstance may be taken into account by the
following modification of Eq. (2)

yn ¼ F½xn; xn�1; . . . ;xn�K �; ð4Þ

where K is the discrete length of the prehistory being suf-
ficient for the unique determination of the state of the re-
sponse map yn.

Let xN and yN be the reference points belonging to the
chaotic attractors of the drive and response maps being
in the generalized synchronization regime, respectively.
Let also dyJk = yJ�k � yN�k and dxJk = xJ�k � xN�k

(k = 0, . . . ,K), be the vectors characterizing the deviation
of the trajectories under consideration xJ�k, yJ�k from the
reference trajectories xN�k and yN�k. For the neighbor point
xJ of the drive oscillator such that kdxJk = kdxJ0k < e its im-
age yJ in the response system is also close to the reference
point yN (see [4] for detail), i.e., kdyJk = kdyJ0k < d(e). Having
supposed that

kdxJkk < e; k ¼ 0; . . . ;K ð5Þ

and linearized Eq. (4), one obtains that

dyJ ¼
XK

k¼0

JxN�k
F½xN ; . . . ;xN�K �dxJk; ð6Þ

where JxN�k
is the Jacobian operator for kth variable. Since

the form of F[�] can not be found explicitly, Eq. (6) may
be rewritten in the form

dyJ ¼
XK

k¼0

AkdxJk; ð7Þ

where Ak ¼ JxN�k
F½xN; . . . ; xN�K �ðk ¼ 0; . . . ;KÞ are the un-

known matrixes. Obviously, the coefficients of Ak-matrix
are determined by the whole set of the vectors xN�K, . . . ,xN,
but, since the elements of this sequence are uniquely con-
nected with each other by the evolution operator (3), one
can assume that Ak depends only on xN�K, i.e.,
Ak = Ak(xN�K).

Under assumption (5) made above, in view of the line-
arity, one can write

dxJk ¼ BkðxN�KÞdxJ ð8Þ

[where Bk(xN�K) is the unknown matrix1 whose coefficients
depend both on the reference vector xN�K and the number k
of the considered deviation dxJk], which results in

dyJ ¼
XK

k¼0

AkðxN�KÞBkðxN�KÞdxJ ; ð9Þ
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and, as a consequence, in

dyJ ¼ CdxJ; ð10Þ

where C is the matrix defined as

C ¼
XK

k¼0

AkðxN�KÞBkðxN�KÞ: ð11Þ

Note, also, within the framework of the traditional concept
of the generalized synchronization implying that the states
of the interacting systems are connected with each other
by continuously differentiable functional relation (2) one
can obtain the similar to (10) relationship

dyJ ¼ eCdxJ ; ð12Þ

with the only one difference that

eC ¼ JF½xn�: ð13Þ

Despite of the similarity of Eqs. (10) and (12) there is a
great difference between them. Indeed, Eq. (10) has been
obtained under assumption that the phase trajectories xN�k

and xJ�k (k = 0, . . . ,K) are close to each other on the whole
prehistory time interval with the length K (see Eq. (5)),
whereas Eq. (12) requires only the nearness of two points,
xN and xJ, i.e., instead of Eq. (5) it requires only

kdxJk < e: ð14Þ

Since for the chaotic systems the phase trajectories can
both converge and diverge, the nearness of xN and xJ (Eq.
(14)) does not mean the fulfillment of the requirement
(5), i.e., among the vectors xJ being close to xN only small
part of them satisfies the requirement (5). This statement
is illustrated in Fig. 1 for the logistic map

xnþ1 ¼ axnð1� xnÞ; a ¼ 3:75: ð15Þ

One can see that, although both the points xJ1 and xJ2 are
close to the reference state xN (and for both of them
requirement Eq. (14) is fulfilled), only the point xJ1 obeys
Eq. (5) due to the nearness of the whole trajectory xJ1�k

(�) to xN�k, whereas for the point xJ2 (j) condition (5) fails,
since its trajectory xJ2�k is not close to the reference one
xN�k on the whole prehistory interval with the length K.

Although the coefficients of the matrixes C and eC are
unknown, the validity of both Eqs. (10) and (12) may be
verified if there are N > m nearest neighbors xJi of the refer-
ence vector xN and corresponding them vectors yJi of the
 0.2

 0.4

 0.6

 0.8

x

 26  24  22  20  18  16  14  12  10  8  6  4  2  0

k

2

1

Fig. 1. The dependencies of x-value of logistic map (15) on the prehistory
time k. The reference trajectory xN�k is shown by bold line, two
trajectories xJ1�k xJ2�k (whose end points xJ1 xJ2 are close to xN) are
shown by points � (line 1) and dashed line with points j (line 2),
respectively. The horizontal axis is shown in the opposite direction.
response map. Note also, all vectors xJi being close to xN

can be used to check Eq. (12), whereas for the examination
of Eq. (10) only vectors xJi are applicable whose prehistory
trajectory satisfies Eq. (5).

Having tested the presence of the generalized synchro-
nization (e.g., with the help of the auxiliary system ap-
proach) we can pick out m nearest neighbors xJi

(i = 1, . . . ,m) and corresponding to them vectors yJi to deter-
mine the coefficients of the matrix C (or eC) with the help of
Eq. (10) (or Eq. (12), respectively) in the same way as it has
been done in [12]. Afterwards, having determined the coef-
ficients of the matrix C (or eC) we can now find the vectors
dzJi, (i = m + 1, . . . ,N) as

dzJi ¼ CdxJi or dzJi ¼ eCdxJi ð16Þ

and compare them with the vectors dyJi of the response
system to check Eq. (10) (or Eq. (12)). To characterize the
degree of closeness of the vectors dyJi and dzJi with each
other one can compute the normalized differences

DJi ¼
kdyJi � dzJik
kdyJik

ð17Þ

for each pair of vectors and build their distributions.
So, the strategy of the investigation of the generalized

synchronization essence may be the following. Firstly, Eq.
(12) must be checked for the set of vectors xJi being nearest
to the reference one xN, i.e., all points satisfying require-
ment (14) must be used. If Eq. (12) is valid, it means that
in the generalized synchronization regime the states of dis-
crete maps are connected with each other by the func-
tional relation (2). Alternatively, the violation of Eq. (12)
indicates that Eq. (2) being the main definition of the gen-
eralized synchronization concept accepted hitherto should
be reconsidered. In this case the second step consists in the
verification of Eq. (10) (and Eq. (4), respectively) with the
help of the consideration only vectors xJi whose trajectories
xJi�k satisfy the requirement (5), with the rest of the vec-
tors xJi used previously to check Eq. (12) having to be elim-
inated from the consideration.2 Since the length K of the
prehistory (or the length of the phase tube) is inversely pro-
portional to the absolute value of the largest conditional
Lyapunov exponent kr

1 < 0, it may be estimated as
K � 1=jkr

1j.
In this Letter the generalized synchronization in the dis-

crete maps is studied for two sample systems: two unidi-
rectionally coupled logistic maps and two mutually
coupled Hénon maps. As we will see below, the concept
of the generalized synchronization for the discrete maps
needs refining in the same way as it has been done for
the flow systems, since, in the general case, for the state
vectors of the interacting chaotic maps the prehistory must
be taken into account. As a consequence, the division of
generalized synchronization into weak and strong ones
must also be reconsidered. At the same time, fortunately,
this modification of the generalized synchronization con-
cept does not discard the majority of the obtained hitherto
results concerning generalized synchronization.
2 For the flow system this procedure has been named as the phase tube
approach [12].



A.A. Koronovskii et al. / Chaos, Solitons & Fractals 46 (2013) 12–18 15
3. Logistic maps

As the first example we consider two unidirectionally
coupled logistic maps:

xnþ1 ¼ f ðxn; axÞ;
ynþ1 ¼ f ðyn; ayÞ þ rðf ðxn; axÞ � f ðyn; ayÞÞ;

ð18Þ

where f(x,a) = ax(1 � x), ax = 3.75, ay = 3.79 are the control
parameter values of the drive and response systems,
respectively, r characterizes the coupling strength be-
tween systems [9]. Despite of the fact that logistic map is
the one-dimensional discrete system, it is the etalon object
of nonlinear dynamics demonstrating the wide spectrum
of interesting effects, and, therefore, it is typically used to
study different phenomena including chaotic synchroniza-
tion. Additionally, the logistic map belongs to the non-
invertible discrete systems, for which the existence of the
functional relation is not proven. Due to the one-dimen-
sional character of interacting systems (18) the vectors in
discussion given above should be replaced by scalars,
whereas all theoretical and analytical findings remain
correct.

To detect the generalized synchronization regime we
have computed conditional Lyapunov exponent for system
(18) with further refinement of the threshold values with
the help of the auxiliary system method [11]. In Fig. 2
the dependence of the conditional Lyapunov exponent on
the coupling parameter r is shown. It is clearly seen that
conditional Lyapunov exponent is negative for
r 2 [0.12;0.18] and r P 0.265 that is the evidence of the
presence of the generalized synchronization regime in
these regions.3 At that, the generalized synchronization is
close to the complete (strong) one if the coupling parameter
is a great enough, i.e. r P 0.265, whereas for r 2 [0.12;0.18]
the detected regime corresponds to the so-called weak syn-
chronization. It is clear that as in the case of the flow sys-
tems in the strong generalized synchronization there is no
need to take prehistory into account because the drive and
response system states are related with each other by the
simple functional relation yn � xn [9]. At the same time,
the case of weak synchronization (when r 2 [0.12;0.18]) de-
mands the additional investigation.

Without the loss of generality we fix the coupling
parameter to be r = 0.14 that corresponds to the minimum
negative value of the conditional Lyapunov exponent
(marked by arrow in Fig. 2(a)). Having assumed the value
of the accuracy in Eq. (5) e = 0.01 we have analyzed the
influence of the length K of the prehistory interval on the
points dyJi and normalized differences (17), with the refer-
ence point xN being selected randomly.4 Obviously, when
Eq. (10) (or Eq. (12)) is satisfied the distribution of normal-
ized differences DJi should be the d-function.

Fig. 2(b), (d) and (f) illustrates the histograms of the
normalized differences DJi with the increase of the length
3 This finding has been also verified with the help of the auxiliary system
approach.

4 It should be noted that the quantitative value of the accuracy should be
a small enough in comparison with the amplitude of the signal from the
system under study and, at the same time, it should be a sufficiently large
to provide the reasonable statistics for a given time of calculation.
K of the prehistory. Histograms have been built by
N = 1000 neighbor points being closed to each other during
all prehistory interval with the length K. To achieve such
reasonable statistics for a given value of accuracy e we
have done L iterations the quantitative values of which
are indicated in the caption to Fig. 2. In Fig. 2(c), (e) and
(g) the (x,y)-planes characterizing the drive and response
system states for the selected values of the control param-
eters are also shown. In each figure the points (xJi,yJi) of the
interacting systems for which requirement (5) is fulfilled
are also indicated. Fig. 2 (b) and (c) corresponds to the case
when the prehistory is not taken into account at all, i.e.,
K = 0. This consideration (without the prehistory) corre-
sponds to the traditional concept of the generalized syn-
chronization generally accepted hitherto. It is clearly seen
that in this case the normalized differences DJi are distrib-
uted uniformly over the range [0;1] (Fig. 2(b)), at that all
points in the phase space of the response system are also
allocated randomly in the wide range of the y-value varia-
tion (Fig. 2(c)). So, we have to conclude that Eq. (12) fails
and, as a consequence, the traditional viewpoint on the
generalized synchronization regime in the discrete sys-
tems needs refining.

When the length of the prehistory increases, e.g., for
K = 10 (Fig. 2(d) and (e)), the separate peaks in the normal-
ized difference distribution are revealed (they are exist due
to the inhomogeneity of the chaotic attractor), although
the points yJi in the phase space of the response system re-
main distributed in the wide range of the y-value as before.
Finally, Fig. 2(f) and (g) illustrates the analogous distribu-
tions for the optimal length of the prehistory interval
(K = 28). In this case the distribution of the normalized dif-
ferences DJi is the d-function (Fig. 2(f)), and all considered
system states (xJi,yJi) satisfying requirement (5) are com-
pressed into small neighborhood of the reference point
(xN,yN) (Fig. 2(g)).

So, having implemented the strategy developed above
we can conclude that the relationship between states of
the interacting logistic maps involves the prehistory of
the drive system evolution in the same way as it has been
revealed recently for the systems with continuous time
[12].

4. Hénon maps

As the second example we consider two mutually cou-
pled Hénon maps. The mutual type of coupling between
interacting systems has been selected for the purpose of
universality, i.e. the mutual coupling is so typical as the
unidirectional one but analysis of the generalized synchro-
nization regime is performed predominantly in the unidi-
rectionally coupled dynamical systems. There are also
attempts to extend the concept of such phenomenon to
the systems with a bidirectional type. For example, in our
previous works [16,17] we have shown that the general-
ized synchronization regime in mutually coupled chaotic
systems could be detected by the moment of transition
of the second positive Lyapunov exponent in the field of
the negative values.

The system under study is given by:



Fig. 2. Dependence of the conditional Lyapunov exponent on the coupling parameter r (a); histograms of the normalized differences DJi built by N = 1000
neighbor points (b,d, f) and (x,y)-planes (c,e,g) for two unidirectionally coupled logistic maps (18) being in the generalized synchronization regime
(r = 0.14, marked by arrow in this figure (a)) for the different lengths of the prehistory: K = 0 (the number of iteration used to achieve reasonable statistics is
L � 3.3 � 104) (b,c), K = 10 (L � 5.5 � 106) (d,e), K = 28 (L � 6.06 � 1010) (f,g). In Fig. 2(c), (e) and (g) the points of the interacting systems satisfying
requirement (5) are also shown.
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x1
nþ1 ¼ f x1

n; x
2
n; ax

� �
þ r f y1

n; y
2
n; ay

� �
� f x1

n; x
2
n; ax

� �� �
;

x2
nþ1 ¼ bx1

n;

y1
nþ1 ¼ f y1

n; y
2
n; ay

� �
þ r f x1

n; x
2
n; ax

� �
� f y1

n; y
2
n; ay

� �� �
;

y2
nþ1 ¼ by1

n;

ð19Þ

where x = (x1,x2) [y = (y1,y2)] are the vector-states of the
first [second] system, f(x1,x2,a) = ax1(1 � x1) + x2 is the
nonlinear function, ax = 3.16779, ay = 2.9, b = 0.3 are con-
trol parameters, r is the coupling parameter [18,19]. For
the selected values of the control parameters generalized
synchronization determined by the moment of the transi-
tion of the second positive Lyapunov exponent in the field
of the negative values [16,20] arises at r � 0.035.

Now, we fix the coupling parameter to be r = 0.2 and
apply the strategy of the investigation of the generalized
synchronization essence (see above) to the system under
study. For the chosen value of the coupling parameter
the weak generalized synchronization is observed in sys-
tem (19). As in the case of the logistic maps we character-
ize the degree of closeness of the vectors yJi and zJi by
histograms of the normalized differences (17) built by
N = 100 neighbor points. The quantitative values of itera-
tions L used to achieve such statistics are also shown in
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Fig. 3. Histograms of the normalized differences DJi built by N = 100
neighbor points (a,c) and the vectors yJi (	) and zJi (j) (b,d) of the second
Hénon map (19), r = 0.2, for the different lengths of the prehistory
interval: K = 0 (the number of iterations used to achieve reasonable
statistics is L � 5.9 � 104) (a,b), K = 40 (L � 6.2 � 1011) (c,d). The numbers
i of the vectors yJi and zJi are shown by the italic and regular fonts,
respectively.
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the caption of Fig. 3. At the same time, contrary to the case
of the logistic maps considered above, the system under
study allows to visualize the behavior of the vectors yJi

and zJi in a plane. Therefore, in Fig. 3 along with the distri-
butions of the normalized differences DJi (Fig. 3(a) and (c))
the vectors yJi (	) and zJi (j) (Fig. 3(b) and (d)) of the sec-
ond Hénon map (19) are shown. Fig. 3(a) and (b) corre-
sponds to the case when all the nearest vectors xJi

satisfying requirement (14) with e = 0.01 are used (i.e.,
the length of the prehistory interval is K = 0 and Eq. (12)
is examined), whereas Fig. 3(b) and (c) refers to the case
when the prehistory of the length K = 40 is taken into ac-
count (in this case the requirement (5) with e = 0.01 is ful-
filled and Eq. (10) is verified). It is clearly seen that in the
first case the normalized differences DJi are distributed
uniformly over the unit interval (as in the case of the logis-
tic maps considered above) and the vectors zJi and yJi differ
from each other sufficiently that testifies the failure of the
presence of the functional relation between the interacting
system states. But, conversely, for the second case when
the prehistory is taken into account the distribution of DJi

is a d-function and the calculated vectors zJi are in the
excellent agreement with the vectors yJi of the second
map that confirms the theoretical predictions and results
obtained above for the unidirectionally coupled logistic
maps. So, for in the two-dimensional maps coupled mutu-
ally the vector states of the interacting chaotic systems are
not also related with each other by the continuously differ-
entiable functional relation and, again, the prehistory
should be taken into account.
5 For unsmooth map F the dimension of a strange attractor in the whole
phase space D 
 R is supposed to be larger than the dimension of driving
attractor in D space, whereas for smooth F these two dimensions must be
equal.
5. Weak and strong generalized synchronization

In the final part of our Letter we discuss briefly the
existing concept of the weak and strong synchronization
(see, e.g. [9]) concerning the generalized synchronization
regime. As it has been mentioned above, the strong and
weak types of the generalized synchronization are typi-
cally distinguished, according to the properties of the func-
tional relation between states of the systems. The onset of
generalized synchronization is believed to be characterized
by an unsmooth map F that becomes smooth only at suffi-
ciently large coupling strength. The synchronization types
characterized by a smooth and an unsmooth map were
called a strong and weak synchronization, respectively,
with the complete and lag synchronization being a partic-
ular case of strong synchronization. This statement [9] was
based on the calculation of correlation dimension (and
other characteristics) of attractors in the phase space
D
 R (where D and R are the phase spaces of the drive
and response oscillators, respectively).5

Indeed, if one consider the attractor of two coupled lo-
gistic maps in the D
 R-space (see Fig. 2(c)), the fractal
properties of it may be easily revealed. At the same time,
the fractality of the relationship F between states of the
interacting systems is caused by the assumption of the
existence of the simple function relation (1) between sys-
tem states and neglecting the prehistory. As it has been
discussed above, the states of the interacting systems
may be not related with each other by the functional rela-
tion and the prehistory must be taken into account. To
introduce the prehistory into the consideration in the
D
 R-space only vectors yJi must be used which satisfy
requirement (5) (see Fig. 2(g)). As one can see, in this case
all considered system states (xJi,yJi) satisfying requirement
(5) are compressed into small neighborhood of the refer-
ence point (xN,yN), all fractal properties disappear and the
relation F between the drive and response system states
are smooth. The same conclusion can be drawn not only
for the logistic maps (18) but for the general case (3).

Nevertheless, the concept of the weak and strong types
of the generalized synchronization may be used in the im-
proved form. This improvement consists in the following.
When the state of the second system yn depends on the
prehistory (see Eq. (4)) with the length K this type of the
synchronous dynamics should be considered as the weak
generalized synchronization. With the growth of the cou-
pling strength the required length K of the prehistory de-
creases, and, for the certain value of the coupling
parameter r the length K becomes equal to zero and the
complete synchronization regime is observed in the sys-
tem. Since for the unidirectionally coupled oscillators the
length of the prehistory K depends on the value of the max-
imum conditional Lyapunov exponent kr

1, the behavior of
the prehistory length agrees well with the finding that
the strong generalized synchronization occurs, when the
maximum conditional Lyapunov exponent drops below
the minimum exponent of the drive system [21]. When
the maximum conditional Lyapunov exponent becomes
less then the minimum exponent of the drive oscillator,
the response system starts to be in some sense stiff enough
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to follow the external signal, whereas the required prehis-
tory length K is equal to zero. In this case the states of the
interacting systems are related with each other by the con-
tinuously differentiable functional relation (2) that should
be considered as the strong generalized synchronization.

So, the division of the generalized synchronization in
discrete maps on the weak and strong ones is certainly jus-
tified. At the same time, the difference between them is not
determined by the type of the relation F established be-
tween the interacting system states (whether it is smooth
or fractal), it is smooth in both cases, at that in the case of
strong synchronization the interacting system states are
related with each other by the functional relation (2),
whereas in for the weak one the prehistory should be taken
into account.
6. Conclusions

In conclusion, we have reported that as in the case of
the flow systems the concept of generalized synchroniza-
tion in discrete maps (coupled both unidirectionally and
mutually) needs refining, since for the state vectors of
the interacting chaotic systems, in general, the prehistory
should be taken into account. We have proposed the mod-
ification of the phase tube approach applicable to the dis-
crete maps and analyzed the essence of the generalized
synchronization by means of such technique. Obtained re-
sults show that the division of the generalized synchroni-
zation into the weak and the strong ones also needs
refinement, i.e. in the strong synchronization interacting
system states are related with each other by the continu-
ously differentiable functional relation whereas in the
weak one the prehistory should be taken into account for
the analysis of the generalized synchronization regime.
At that, both in the case of the strong and weak synchroni-
zation relation established between the interacting system
states is smooth, and the so called ‘‘fractality’’ disappears
when the appropriate consideration of the prehistory is
made.

At the same time, the found refinement of the general-
ized synchronization in discrete maps does not discard the
majority of the obtained hitherto results concerning its
investigation. In particular, the method of Lyapunov expo-
nent computation and auxiliary system approach remains
valid as before as well as the revealed mechanisms of the
synchronous regime arising [10,5]. However, this refine-
ment has an important fundamental significance from
the point of view of the understanding of the core mecha-
nisms of the considered phenomena and is supposed to
give a strong potential for new approaches and applica-
tions dealing with the nonlinear systems. Additionally,
we expect that the phase tube approach gives a powerful
detection and classification tool for the chaotic synchroni-
zation phenomenon study.
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