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INTRODUCTION

Intermittency is typical of many nonlinear systems
and is particularly observed in transitioning from peri�
odic to chaotic oscillations [1] and near the bound�
aries of different regimes of the chaotic synchroniza�
tion of coupled oscillators [2–5].

Intermittent behavior can be classified. Intermit�
tency of types I–III [1–6], on–off intermittency [7],
needle hole intermittency [8], and ring intermittency
[9] can be distinguished in particular. Despite some
similarities (the presence of two different modes alter�
nating with each other in time series), each type of
intermittency has its own peculiarities and character�
istics (especially the dependency of laminar phases on
control parameters and the distribution of the dura�
tions of laminar phases). Mechanisms leading to the
emergence of each type of intermittent behavior also
differ.

In addition to the types of intermittency listed
above, more complicated behaviors of a system dis�
playing two types of intermittency at the same time
can take place. Such behavior is referred to as the
intermittency of intermittencies [10]. This work is
devoted to studying just this type of behavior, which
can exist in a system of unidirectionally coupled cha�
otic oscillators or in an oscillator under external
impact in the state preceding synchronization. At the
same time, the investigated system can be considered
in different time scales introduced by means of contin�
uous wavelet transformation [11, 12], including time
scales differing from the main scale. Experimental
results [10] confirm that two different types of inter�
mittency (needle hole and ring) do coexist in a certain
range of time scales for a system of unidirectionally
coupled oscillators (Ressler systems were considered).

It should be noted that the intermittency of inter�
mittencies is a poorly studied type of behavior, and
therefore is of great interest from a fundamental point
of view, since these studies provide a deeper under�
standing of the nature and mechanisms of such funda�
mental phenomena as intermittency and chaotic syn�
chronization.

We may assume that the intermittency of intermit�
tencies also can exist in a nonautonomous periodic
oscillator under an external impact in the presence of
noise. This work presents numerical simulation results
for such a system relative to the theoretical depen�
dences, and good agreement is achieved. Research
data allow more detailed comprehension of the mech�
anisms leading to the emergence of intermittency of
intermittencies.

METHOD

Let us consider a nonautonomous Van der Pol gen�
erator that is influenced by an arbitrary impact Dξ(t),
where ξ(t) is delta�correlated white noise [〈ξ(t)〉 = 0,
〈ξ(t)ξ(τ)〉 = δ(t – τ)]. The dynamics of the system is
described by the equation

(1)

where A is the amplitude of the external harmonic
impact, and ωe is its frequency. The values of the con�
trol parameters were set at λ = 0.1 and ωe = 0.98. At
such parameter values and a zero noise level (D = 0),
the dynamics of a nonautonomous Van der Pol gener�
ator becomes synchronous when A = Ac = 0.0238,
which corresponds to the saddle�main bifurcation of
the plane of complex amplitudes [13]. It should be
noted that research has been conducted on amplitude
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values A > Ac and D = 1, at which the system displays
type I intermittency with noise in the supercritical
domain of parameter values.

Our consideration of the behavior of a nonautono�
mous oscillator under external impact in different
time scales [11, 12] is based on the introduction of
continuous set of phases of the investigated signals by
means of continuous wavelet transformation,

(2)

with mother Morlet wavelet

(3)

where Ω0 = 2π.
Wavelet surface

(4)

characterizes the behavior of the system in each time
scale s at each moment in time t0. Quantity |W(s, t0)|
characterizes the presence and intensity of corre�
sponding time scale s at the moment in time t0. In
addition, the instantaneous value

(5)

and integral distribution of energy by time scales

(6)

are introduced.
Continuous phase for each time scale s can be

defined via expression ϕ(s, t) = argW(s, t) when using
wavelet transformation (2). In other words, each time
scale s can be characterized using associated phase ϕ(s,
t), which is a continuous function of time scale s and
time t. Such an assembly of phases completely charac�
terizes the behavior of a nonautonomous oscillator
under external impact: the behavior of each time scale
can be described using its associated phase ϕ(s, t).

Let us consider time realization x(t) of system (1)
and external impact Asin(ωet). If the interval of time
scales sl ≤ s ≤ sh satisfying phase capture condition

(7)

and nonzero energy condition (where part of energy of
wavelet spectrum per the given interval of time scales
turns out to differ from zero)

(8)

can be found for this system, then such a mode is
referred to as the synchronization of time scales.
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A synchronous mode is established at an amplitude
of external harmonic impact of As ≈ 0.028 for the
selected values of the control parameters, at which the
synchronous mode of time scales lies in the range s ∈
[sl; sh], sl = 3.98, sh = 8.62.

It should be noted that research has been con�
ducted in the domain of external impact amplitude
values A < As, i.e., type I intermittency with noise can
be detected in the system. Time scales s were selected
as asynchronous, allowing us to observe intermittency
of the ring type.

Let us compare the quantitative characteristics
obtained numerically for the system under consider�
ation with theoretical dependences corresponding to
the intermittency of intermittencies, e.g., the depen�
dency of the average duration of laminar behavior on
the supercriticality parameter and the distribution of
the durations of laminar behavior regions at fixed val�
ues of the control parameters. The amplitude of exter�
nal harmonic impact A and time scale s served as our
critical parameters in studying this type of behavior.

Figure 1 shows the distribution of the durations of
laminar phases obtained numerically for a nonauton�
omous Van der Pol generator under external impact in
coexistence with type I intermittency with noise
(in the supercritical domain) and ring intermittency
for three different sets of the values of external impact
amplitude A and time scale s in which observations
were made. Since the mechanisms leading to ring
intermittency and type I intermittency with noise dif�
fer, we can distinguish the phase jumps related to the
types of intermittency and estimate values Ti and Tr
(where Ti is the average duration of a laminar behavior
region for type I intermittency with noise, and Tr is the
average duration of a laminar behavior region for ring
intermittency) in the theoretical correlation for the
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Fig. 1. Distribution of the durations of laminar phases for
type I intermittency with noise and ring intermittency for
nonautonomous Van der Pol generator under external
impact, and analytical dependencies (9) corresponding to
these distributions (solid lines). Curve (1) A = 0.02308, s =
3.50, Ti = 56.0, Tr = 148.1; curve (2) A = 0.02497, s = 3.57,
Ti = 120.0, Tr = 6002.9; curve (3) A = 0.02496, s = 3.8,
Ti = 118.5, Tr = 2838.



1348

BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES. PHYSICS  Vol. 76  No. 12  2012

ZHURAVLEV et al.

distribution of the duration of laminar phases upon the
intermittency of intermittencies obtained in [10]:

(9)

It can be seen from Fig. 1 that the obtained numerical dis�
tributions for the duration of laminar phases are in very
good agreement with theoretical curve (9), indicating
there is intermittency of intermittencies in the system.

One more characteristic of intermittent behavior is
the dependency of the average duration of laminar
behavior 〈τ〉 on the supercriticality parameter. Figure 2
shows a comparison of the numerical results with the
theoretical curve also known for the intermittency of
intermittencies [9] and expressed by the formula

(10)
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It can be seen from Fig. 2 that the numerical results are
in good agreement with theoretical curves (10) for
when the supercriticality parameter is represented by
time scale s (Fig. 2a), and for when the supercriticality
parameter is (As – A) (Fig. 2b).

CONCLUSIONS

The results presented in this work show that inter�
mittent behavior consisting of two types of intermit�
tency, i.e., the intermittency of intermittencies can be
attained for a periodic oscillator under external
impact. It was also shown that the intermittency of
intermittencies attained in a nonautonomous system
with noise obeys the same theoretical laws as chaotic
oscillators [10]. We may expect that this type of behav�
ior is typical for a wide range of nonlinear systems dis�
playing the synchronization mode of time scales.
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Fig. 2. Dependency of the average duration of laminar
behavior regions on the supercriticality parameter. Dots
indicate numerical results, while the line shows approxi�
mating curve (10). (a) Supercriticality parameter (sc – s) at
an amplitude of external impact is equal to 0.0230;
(b) supercriticality parameter is the amplitude of external
impact А; time scale was selected as 3.97.


