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INTRODUCTION

The study of synchronization of chaotic oscilla�
tions of nonlinear dynamic systems capable of demon�
strating a complex behavior has been in the focus of
attention of researchers for a long time. Chaotic syn�
chronization is of great fundamental and practical
importance (for example, in biological [1, 2], physio�
logical [3, 4], and chemical [5] problems, hidden
information transmission using chaotic signals [6, 7],
control of microwave electronic systems [8], and so
on). A large number of various types of chaotic syn�
chronous behavior are known: complete synchroniza�
tion [9–15], lag synchronization [16, 17], generalized
synchronization [18, 19], phase synchronization [20,
21], and so on. At present, scientists in different coun�
tries study these types of synchronization and, while
each type of synchronization is rather well studied, the
problem of interrelation of different types of synchro�
nous behavior with each other is at the beginning of its
development. Thus, for example, papers [16, 20, 22–
28] are aimed at finding the interrelation of different
types of chaotic synchronization in systems with the
same communication type. In [22–26], a new
approach to the description of synchronous behavior
of chaotic oscillators, the synchronization of time
scales, which naturally generalizes different types of
synchronous behavior mentioned above is proposed.
The application of this approach makes it possible to
consider all of the above types of synchronous behav�
ior of chaotic oscillators from a unified point of view.

As a rule, chaotic synchronization is studied either
in systems with the unidirectional coupling (when the
master oscillator influences the slave one) or with
mutual coupling (when both oscillators equally act on
each other). Obviously, the system behaviors (in par�
ticular, the boundaries of onset of synchronous
regimes) differ for different methods of coupling of
chaotic systems. It can be expected, for example, that

in the case of mutual coupling between chaotic oscil�
lators, the synchronous regime is formed for smaller
values of the coupling parameter than in the case of
unidirectional coupled systems. Nonetheless, the
problem of mutual coupling of different types of syn�
chronous behavior in systems with different coupling
types is still open. Therefore, the objective of this study
is to determine the regularities of behavior of the
boundaries of different types of chaotic synchroniza�
tion upon transition from unidirectionally coupled
systems to systems with mutual coupling.

In this study, we consider four basic types of syn�
chronous behavior: complete synchronization, gener�
alized synchronization, phase synchronization, and
lag synchronization. Practically all of these types of
chaotic synchronization can take place in systems with
unidirectional and mutual coupling types. The prob�
lem of transition from one type of coupling to another
one is interesting. The regime of generalized chaotic
synchronization in mutually coupled systems requires
special examination. It should be noted that, in sys�
tems with such type of coupling, this regime practi�
cally has not been studied. Moreover, the idea of gen�
eralized synchronization for mutually coupled systems
requires the extension of the existing concept of this
type of synchronous behavior in unidirectional cou�
pled systems. Therefore, along with the investigation
of mutual coupling of different types of chaotic syn�
chronization in systems with different coupling types,
here, we develop the concept of the generalized syn�
chronization valid for unidirectional coupled systems
and systems with mutual coupling.

1. TYPES OF CHAOTIC SYNCHRONIZATION

First of all, let us give a brief description of the
known types of chaotic synchronization and methods
of their diagnostics. The simplest is the regime of com�
plete chaotic synchronization [13, 14], which means
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the exact matching of state vectors of interacting sys�
tems . Therefore, this regime is possible
only in the case of their identical character with
respect to control parameters. If the control parame�
ters slightly differ, the regime of lag synchronization
[16, 17] can be formed when interacting systems dem�
onstrate identical oscillations shifted by certain time
interval τ, i.e.,  Obviously, with
increasing the coupling between the oscillators, time
shift τ tends to 0, and the synchronous regime tends to
the complete chaotic synchronization. The similarity
function [16] is used for diagnostics of these types of
synchronous behavior,

(1)

If the interacting systems are in the regime of lag
synchronization, the minimum of the similarity func�
tion vanishes, i.e., σ = min

τ
S(τ) = 0, where τ is the

time shift between the state vectors of the interacting
systems. Obviously, condition σ = 0 for τ = 0 is the cri�
terion of onset of the regime of complete synchroniza�
tion. The simplest method of diagnostics of the regime
of complete chaotic synchronization is the direct
comparison of state vectors of interacting systems 
and  or the calculation of the synchronization
error [27],

(2)

Generalized synchronization is conventionally
considered for a system of two unidirectional coupled
chaotic oscillators, master  and slave  ones,
this synchronization means that, after the end of the
transient process, a certain functional dependence
between these states is established [18], i.e.,

(3)

The form of this dependence  may be rather
complex, and the procedure of its finding may be quite
nontrivial [28]. It should be noted that two different
dynamic systems, including systems with different
phase space dimensionalities, can serve as the inter�
acting oscillators.

Several methods were proposed for diagnostics of
the regime of generalized synchronization between
chaotic oscillators, such as the nearest neighbor
method [18, 29], the method of calculation of condi�
tional Lyapunov exponents [14, 30], and the auxiliary
system method [31].

According to the nearest neighbor method, func�
tional dependence  between the states of the master
and slave systems consists in the fact that two close
states in the phase space of the slave oscillator corre�
spond to two close states in the space of the master sys�
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tem [18]. The quantitative characteristic of the degree
of closeness of the system states is the mean distance

between two states of the slave system,  and  nor�
malized to mean distance  between the randomly
selected states of the master system [32],

(4)

where N is the number of iterations. In the regime of
generalized synchronization, ; and, in the
absence of a functional relation between the states of
the master and slave systems, d ≈ 1.

It should be noted that the nearest neighbor
method for the diagnostics of the regime of general�
ized synchronization does not make it possible to
exactly find the threshold of onset of the synchronous
regime; this method can be used to find the range of
values of the control parameter to which the point
lying between the synchronous and asynchronous
regimes belongs. At the same time, the nearest neigh�
bor method does not require the knowledge of the
equations describing the system evolution, and there�
fore, it is used in processing of experimental data [33].
Another application of the nearest neighbor method is
the specification and verification of the results
obtained using other methods.

For diagnostics of the regime of generalized syn�
chronization based on numerical simulation, the most
efficient method is the auxiliary system method [31].
The idea of the auxiliary system method is reduced to
the following: along with slave system , identical
auxiliary system  is considered. The initial condi�
tions the auxiliary system  are chosen different
from the initial state of slave system , but in the
attraction region of the same attractor (in practice this
means a small mismatch of initial conditions, which is
automatically implemented due to the presence of
fluctuations). In the case of the absence of the regime
of generalized synchronization between the interact�
ing systems, state vectors of the slave  and auxil�
iary  systems belong to the same chaotic attractor
but are different. If the regime of generalized synchro�
nization takes place, after the end of the transient pro�
cess, the states of the slave and auxiliary systems
should be identical, , due to the satisfac�
tion of relationships , and correspond�
ingly, . Thus, the equivalence of the
states of the slave and auxiliary systems after the tran�
sient process is the criterion of the presence of gener�
alized synchronization between the master and slave
oscillators.

The analysis of the regime of generalized synchro�
nization can be performed using the calculation of
conditional Lyapunov exponents [14, 30]. If the
dimensionalities of the phase spaces of the master and
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slave systems are Nd and Nr, respectively, the behavior
of the unidirectional coupled chaotic oscillators can
be characterized using the spectrum of Lyapunov fac�
tors . Since the behavior of the
master system is independent of the state of the slave
oscillator, the spectrum of Lyapunov factors can be
separated into two parts: Lyapunov factors of the mas�

ter system  and conditional Lyapunov

factors . The criterion of the existence of
generalized synchronization in unidirectional coupled
dynamic systems [14, 28] is the negative character of

higher conditional Lyapunov factor . It should also
be noted that, for unidirectional chaotic oscillators,
the regimes of complete and lag synchronization are
also the particular cases of the regime of generalized
synchronization [28].

The basis of the concept of chaotic phase synchro�
nization is the idea of instantaneous phase ϕ(t) of cha�
otic signal [34–37]. Phase synchronization means that
the phases of chaotic signals are captured, while the
amplitudes of these signals are not coupled with each
other and look chaotic [34, 35]. At present, several
methods of phase introduction with identically correct
results for systems with a rather good topology of the
attractor (systems with phase coherent attractor) are
known. The most widely spread is the introduction of
phase ϕ(t) as the angle in the polar coordinate system
in plane (x, y) [16, 38],

(5)

but, in this case, all trajectories in plane (x, y) should
rotate about the point of origin. Sometimes, it is pos�
sible to transform coordinates in order to obtain a pro�
jection suitable for the phase introduction (as, for
example, for the Lorentz system) [20, 38]. In a number
of cases, the transition to velocity plane  makes it
possible to eliminate the phase incoherence of the
attractor and introduce the phase as the angle in polar

coordinates in plane , i. e.,  [39].

Phase synchronization occurs if difference of
instantaneous phases of chaotic signals  is time�
limited,

(6)

2. INFLUENCE OF THE DEGREE 
OF COUPLING MUTUALITY

ON THE ONSET OF REGIMES 
OF CHAOTIC SYNCHRONIZATION: 

ANALYTICAL ESTIMATES

Let us study the influence of the type of coupling
between the coupled systems on the onset of the
regimes of complete, lag, generalized, and phase syn�
chronization.
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Let us consider the behavior of two dissipatively
coupled identical chaotic oscillators,

(7)

where  is the state vector of ith element, F is the
operator of the system evolution, H = δi, j is the matrix
characterizing the coupling between the elements, σ is
the scalar parameter characterizing the coupling
intensity, δi, j = 0 or 1, δi, j = 0 ( ), α is the coupling
mutuality coefficient characterizing the degree of
influence of the second system on the first one (or the
symmetry of coupling between the systems). It is clear
that, for α = 0, the type of coupling in system (7) is
unidirectional, and α = 1, on the contrary, character�
izes the mutual symmetric coupling between the inter�
acting systems.

Due to the identical character of the values of con�
trol parameters of interacting systems, the regime of
complete chaotic synchronization can be formed in
system (7). It is possible to find analytically the thresh�
old value of the onset of the regime of complete cha�
otic synchronization using the method of determina�
tion of the stability of the synchronous state of the net�
work based on the examination of the higher Lyapunov
factor [40, 41]. According to this method, for determi�
nation of the threshold of the onset of complete cha�
otic synchronization (and the stability domain of this
regime) in an arbitrary network consisting of N identi�
cal coupled oscillators,

(8)

(where L is the operator determining the mutual cou�
pling of elements, Gij are the elements of coupling
matrix G), it is sufficient to calculate the dependence
of higher Lyapunov factor Λ on parameter ν = σλi (λi,
i = 2, …, N are the eigenvalues of coupling matrix G)
for the system

(9)

where  is the variable characterizing the time evolu�
tion of the autonomous oscillator,

(10)

The domains in which Λ(ν) < 0 correspond to the sta�
bility domains of the synchronous state of the network.
In this case, instant of transition ν1 of the higher
Lyapunov factor over zero, Λ(ν1) = 0, can be consid�
ered as the threshold of the onset of the regime of com�
plete chaotic synchronization in the network of cou�
pled nonlinear elements [43].

Obviously, for i = 2, system (8) is becomes system
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this case, the coupling matrix between the network
elements is

(11)

and its eigenvalues   The thresh�
old of onset of complete synchronization in this case is
completely determined by the value of parameter ,
i.e., the degree of influence of the second system on
the first one (the degree of coupling mutuality). The
threshold of onset of complete synchronization is

(12)

It follows from relationship (12) that the thresholds
of establishment of complete synchronization in sys�
tems with unidirectional σ1(α = 0) and mutual σ2(α =
1) types of coupling are related as

(13)

It should be noted that relationships (12) and (13)
should be satisfied for any dynamic systems exhibiting
chaotic dynamics that serve as the elements of the net�
work with the dimensionality 2. At the same time, this
relationship is valid only for the regime of complete
chaotic synchronization, whose implementation is
possible in systems with identical parameters. It is
clear that the introduction of mismatch of the control
parameters of the systems results in the violation of
relationships (12), (13) and implementation of other
types of synchronous behavior in system (7). In this
case, it is quite difficult to find analytically the rela�
tionships of the threshold values of onset of synchro�
nous regimes. At the same time, numerical simulation
makes it possible to obtain corresponding estimates for
different types of synchronous behavior in coupled
systems with identical and detuned parameters. The
next section gives such estimates for different types of
chaotic synchronization, as exemplified by coupled
Rossler systems.

3. INFLUENCE OF THE DEGREE 
OF COUPLING MUTUALITY

ON THE ONSET OF REGIMES
OF CHAOTIC SYNCHRONIZATION: 

NUMERICAL SIMULATION

The equations describing the dynamics of the stud�
ied system of coupled Rossler oscillators are written as

(14)

where  are the Cartesian coordinates of
the first and second systems, respectively; overdots
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denote time derivatives, σ are the coupling parame�
ters, and α is the coupling mutuality coefficient. The
values of the other control parameters of system (14),
are chosen by analogy with [44, 45] as follows: a =
0.15, p = 0.2, and c = 10.0. Parameter ω2 (characteriz�
ing the eigenfrequency of oscillations of the second
system) is taken equal to ω2 = 0.95, and the similar
parameter of the first system varies in the range [0.89,
1.01] in order to determine the mismatch between the
oscillators.

Let us study the behavior of the boundaries of onset
of the regimes of complete, lag, generalized, and phase
synchronizations under variation of parameter

A. COMPLETE SYNCHRONIZATION

First, let us consider the relationship between the
analytical estimates and numerical results for the
regime of complete chaotic synchronization. In this
case, system of equations (14) can be written in form
(8), where  =

   i = 1, 2, ωi =
0.95, and the matrix of the coupling coefficients
between the elements of the network is determined by
relationship (11). Figure 1 shows the dependence of
the higher Lyapunov factor for this network on param�
eter ν. The value of ν1 = 0.2, corresponding to the
instant of transition of the higher Lyapunov factor over
zero, is marked by the arrow.

The following conclusion can be made based on
the calculation: the dependence of the threshold of
onset of the regime of complete chaotic synchroniza�
tion in the system of two coupled Rossler oscillators
(14) is determined by relationship (12), where ν1 =
0.2. Let us compare thus obtained analytical estimates
with the results of direct numerical calculations. Fig�
ure 2 shows the dependence of the threshold of onset
of complete chaotic synchronization on parameter α
obtained by direct comparison of the state vectors of
the interacting systems (see Section 1). This figure also
shows theoretical dependence (12). Good agreement
of the analytical and numerical results can be seen.
Thus, with increasing coefficient α, the threshold of
onset of complete synchronization decreases accord�
ing to (12). In this case, it can be clearly seen that the
regime of complete synchronization in unidirectional
coupled identical Rossler systems (14) occurs for cou�
pling intensity σ1 = 0.2, while, for identical mutually
coupled Rossler systems, it is implemented for σ2 =
0.1; i.e., the thresholds of onset of complete synchro�
nization in unidirectional and mutually coupled
Rossler systems are related as 2 : 1, in complete agree�
ment with the results of theoretical predictions.
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B. LAG SYNCHRONIZATION

Now, let us study the problem of the influence of
mismatch of the control parameters on onset of the
synchronous regime in coupled systems. It is known
that, in this case, lag synchronization can be estab�
lished when the interacting systems demonstrate iden�
tical oscillations shifted by a certain time interval. It
has been noted above that the analytical calculation of
the boundary of lag synchronization (as well as other
types of synchronous behavior considered below) is
difficult. However, it can be easily found numerically
by calculating likelihood function (1).

Let us consider the behavior of the boundaries of
the regime of lag synchronization under variation of
parameter α. Figure 3a shows these boundaries on
parameter plane (ω1, σ) for various  Curves 1
(α = 0) and 6 (α = 1) show the boundaries of lag syn�
chronization for unidirectional and mutually coupled
Rossler oscillators, respectively. The other curves are
between them, and the larger α, the lower the curve,
and the faster the regime of lag synchronization is real�
ized. At the same time, it is impossible to observe strict
law σ(α). Figure 3b shows the dependences σ(α) for
the case of relatively large and relatively small eigen�
frequency mismatch.

The dependences illustrating the value of the time
shift between the states of the interacting systems at
the instant of onset of the regime of lag synchroniza�
tion for various values of parameter ω1 for unidirec�
tional and mutually coupled oscillators are shown in
Fig. 4. It can be easily seen that, if the control param�
eters of the interacting systems are identical, the time
shift between the state of the interacting systems in the
case of unidirectional and mutual coupling is equal to
zero, and the regime of lag synchronization coincides
with the regime of complete synchronization.

As the mismatch between the systems increases,
the time shift between the system states grows. If the
time shift becomes relatively small (which corresponds
to the case of a relatively small mismatch of control
parameters, ), relationship (13) is still

[ ]0;1 .α∈

( )1 0.93;0.97ω ∈

valid, although approximately. As the frequency mis�
match increases, the time shift practically reaches sat�
uration (see Fig. 4 for ω1 < 0.93 and ω1 > 0.97), and
relationship (13) is violated (see Fig. 3a). 

Note that the time shift reaches saturation in sys�
tems with unidirectional coupling earlier than in sim�
ilar mutually coupled systems. Moreover, the time
shift between the states of the interacting systems in
the case of mutual coupling between them is larger
than in systems with unidirectional coupling. This is
determined by substantial differences in the threshold
values of the coupling parameter corresponding to the
onset of the synchronous regime. Since the time shift
between the states of the interacting systems in the
regime of lag synchronization depends on the cou�
pling parameter as τ ~ σ–1 [23] and the growth of the
mismatch between the systems results in the sharp
growth of the threshold value of the coupling parame�
ter, this behavior of the dependences shown in Fig. 4
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line) calculation by formula (12).
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turns out to be rather typical of unidirectionally and
mutually coupled chaotic systems.

C. GENERALIZED SYNCHRONIZATION

Now, let us analyze generalized synchronization
[18] in system (14). It has already been mentioned
above that, for unidirectional coupled systems, the
regimes of complete and lag synchronizations are par�
ticular cases and stronger forms of generalized syn�
chronization (see also [28]); i.e., if the regime of com�
plete or lag synchronization is implemented in the sys�
tem, generalized synchronization should necessarily
be realized. A similar situation should take place in
systems with mutual coupling, both symmetric and
nonsymmetric; however, thereare a number of serious
questions requiring further study. Recall that the idea
of generalized synchronization for systems with
mutual coupling has not been introduced. Therefore,
similarly to the case of unidirectional coupled systems,
we assume that generalized synchronization in two
systems with mutual coupling is the regime for which
the unique functional relationship between their states
is established. In this case, functional relationship (3)
is rewritten as

(15)

It should be noted that relationship (3) can be con�
sidered as a particular case of (15); therefore, the main
properties of generalized synchronization of unidirec�
tional and mutually coupled systems should be
retained.

It has already been mentioned above that, for diag�
nostics of generalized synchronization in systems with
unidirectional coupling, along with the auxiliary sys�
tem method and the nearest neighborhood method,
the method of calculation of Lyapunov exponents is
used; the latter can be applied for the analysis of gen�
eralized synchronization in mutually coupled systems.
Indeed, if the coupling parameter between the systems
increases, one of the positive Lyapunov exponents
goes over to the domain of negative values (Fig. 5). The
boundary of transition of the second Lyapunov factor
to the domain of negative values in the system of
mutually coupled Rossler oscillators in parameter
plane (ω1, σ) is shown in Fig. 6 (curve 2). It can be seen
that this boundary does not coincide with the bound�
ary of lag synchronization shown in this figure
(curve 1). Moreover, it goes lower than the boundary
of lag synchronization and is practically independent
of the frequency mismatch between the interacting
systems. The fact that the transition of one of the pos�
itive Lyapunov exponents in the mutually coupled sys�
tems into the domain of negative values is not related
with the onset of lag synchronization and that, by
analogy with the case of unidirectional coupled sys�
tems, it corresponds to the boundary of onset of the
regime of generalized synchronization in mutually
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0.2; (b) lag synchronization threshold as a function of α for
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coupled systems was proved in [46] using the nearest
neighbor method.

Figure 7a shows the boundaries of generalized syn�
chronization in parameter plane (ω1, σ) for various
values of parameter . It can be seen from this
figure that the boundaries of onset of the synchronous
regime in the case of unidirectional and mutual cou�
pling between the systems (curves 1 and 6, respec�
tively) strongly differ from each other. In the region of
relatively large values of the mismatch of eigenfre�
quencies, the thresholds of generalized synchroniza�
tion in both cases are close to each other. In the region
of relatively small frequency mismatch (ω1 ≤ 0.91,
ω1 ≥ 0.99), these values rather strongly differ, and,
while for identical systems, relationship (13) is
approximately satisfied due to the closeness of the
regime of generalized synchronization and complete
synchronization, the gradual transition from one rela�

[ ]0;1α ∈

tionship to the other is observed with increasing mis�
match between the systems. This behavior of the
boundary of generalized synchronization in unidirec�
tional coupled systems in parameter plane (ω1, σ) is
explained in detail in [45, 47]. Substantial differences
in the quantitative values of the threshold of onset of
synchronous regime in the region of relatively large
and relatively small eigenfrequency mismatches are
determined by the differences in the behavior of the
main spectral components of the Fourier spectra of
interacting systems (see [47, 48] for details). In sys�
tems with mutual coupling, the spectral components
behave qualitatively in a similar way under variation of
parameter ω1, which does not result in substantial dif�
ferences in quantitative values of the threshold of onset
of generalized synchronization in this case.

One of the most important problems related with
the investigation of generalized synchronization is the

0
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Fig. 5. Four higher Lyapunov exponents vs. coupling parameter σ for the system of coupled Rossler oscillators, ω1 = 0.99. The
instant of transition of one of the positive Lyapunov exponents in the region of negative values σLE is shown by an arrow.
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Fig. 6. (Curve 1) Boundary of the regime of lag synchronization and (curve 2) the instant of transition of one of the positive
Lyapunov exponents to the region of negative values in the system of two mutually coupled Rossler oscillators.
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analysis of the transition from curve 1 to curve 6 (see
Fig. 7) and determination of the value of  at which
the influence of the frequency mismatch between the
systems becomes significant. It can be seen from
Fig. 7a that, irrespective of the value of mutual cou�
pling  in the region of relatively large values of eigen�
frequency mismatch, the critical values of the cou�
pling parameter are close to each other. In the region
of relatively small eigenfrequency mismatch for

, the threshold of onset of the synchronous
regime is much higher than the similar value of the
coupling parameter in the region of a relatively large
frequency mismatch. For , a weak depen�
dence of the threshold of generalized synchronization
on the frequency mismatch is observed.

α

α

[ ]0 0 6; .α ∈

[0.8;1]α ∈

Figure 7b, similar to Fig. 3b, shows the dependence
of the threshold of generalized synchronization on
parameter α for relatively large and relatively small
frequency mismatches. It can be seen that, in the
region of small frequency mismatch, the threshold of
generalized synchronization almost linearly decreases
with increasing α, while, in the region of large fre�
quency mismatch, σ(α) exhibits a weak nonlinear
dependence.

D. PHASE SYNCHRONIZATION

In this section, we analyze the influence of the
degree of the coupling symmetry on the onset of the
regime of phase synchronization in system of coupled
Rossler oscillators (14). For the chosen values of the
control parameters, the attractors of these systems in
the absence of coupling are phase�coherent. This
makes it possible to introduce the phases of these sys�
tems, according to relationship (5), as the angles in the
polar coordinate system in planes (x1, 2, y1, 2).

Figure 8 shows the boundaries of onset of phase
synchronization in parameter plane (ω1, σ) and the
dependences of the threshold values of phase synchro�
nization for the cases of relatively large and relatively
small eigenfrequency mismatches. It can be seen that,
with increasing , the threshold of phase synchroniza�
tion decreases, dependence σ(α) is close to a linear
function (both in the region of relatively large and rel�
atively small eigenfrequency mismatches).

It can be seen from this plot that, with increasing
mismatch, the threshold of onset of phase synchroni�
zation in systems with unidirectional coupling begins
to grow fast, while, for mutually coupled systems, the
growth of the boundary of phase synchronization is
much slower. This behavior of phase synchronization
in systems with unidirectional coupling can be
explained as follows. It is known [49, 50] that, for ωd <
0.9 and ωd > 0.98 in Rossler systems (14) with the
above values of control parameters, the onset/destruc�
tion of phase synchronization develops via the occur�
rence/loss of phase coherence of a chaotic attractor. In
mutually coupled Rossler systems, according to the
calculation, in the entire range of variation of param�
eter ω1 shown in Fig. 8, this scenario of onset of phase
synchronization is not observed. The differences in the
scenario, and therefore, mechanisms of onset of syn�
chronous regimes in systems with unidirectional and
mutually coupled systems result in the change of the
character of the dependence of the boundary of onset
of the synchronous regime.

Thus, for the regime of phase synchronization rela�
tionship (13) is approximately satisfied in the bounded
range of frequency mismatch. In the region of rela�
tively large eigenfrequency mismatch, relationship
(13) is violated for all considered types of synchronous
behavior.
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Fig. 7. (a) Boundaries of generalized synchronization of
two coupled Rossler systems (14) in parameter plane (ω1,
σ) with increasing α from (curve 1) 0 to (curve 2) 1 with a
step of 0.2; (b) threshold of generalized synchronization as
a function of α for relatively large (ω1 = 0.99, curve 1) and
relatively small (ω1 = 0.93, curve 2) eigenfrequency mis�
match.
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CONCLUSIONS

In this paper, we have studied the problem of the
influence of the degree of the coupling symmetry on
the onset of regimes of complete, lag, phase, and gen�
eralized synchronizations. The analytical dependence
of the threshold of onset of complete synchronization
on the coupling symmetry coefficient has been
obtained. In particular, it has been demonstrated that,
in two unidirectional and mutually coupled systems,
the ratio of the thresholds of its onset is 2 : 1. It has
been shown that, for other types of synchronous
behavior (lag and phase synchronizations), there is no
such strict regularity, and this relationship is approxi�
mately satisfied only in the region of relatively small
eigenfrequency mismatches of interacting systems. At
the same time, in the region of large frequency mis�
match, the ratio of the values of the coupling parame�
ter corresponding to the onset of the synchronous

regime in unidirectional and mutually coupled sys�
tems is much higher.

At the same time, irrespective of the value of the
mismatch between the systems for the regimes of lag,
complete, and phase synchronizations, the threshold
of onset of the synchronous regime is reduced with
increasing the coupling symmetry parameter. A simi�
lar behavior is observed for generalized synchroniza�
tion in the region of a relatively small eigenfrequency
mismatch. In the region of a large frequency mismatch
the threshold of onset of generalized synchronization
weakly depends on the coupling mutuality coefficient.
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