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Ring intermittency near the boundary of the synchronous time scales of chaotic oscillators
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In this Brief Report we study both experimentally and numerically the intermittent behavior taking place
near the boundary of the synchronous time scales of chaotic oscillators being in the regime of time scale
synchronization. We have shown that the observed type of the intermittent behavior should be classified as the
ring intermittency.
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Chaotic synchronization is one of the most important
directions of nonlinear dynamics, and it attracts great attention
due to the large fundamental significance [1,2] and the
wide range of practical applications, e.g., in microwave
systems [3]. It is also helpful for information transmission
[4] and for diagnostics of dynamics of some biological
systems [5,6], etc. There are several main types of chaotic
synchronization, such as phase synchronization (PS) [1],
lag synchronization (LS) [7], generalized synchronization
(GS) [8,9], complete synchronization (CS) [10], and time
scale synchronization (TSS) [11,12]. Among these types of
chaotic synchronization the time scale synchronization regime
plays an important role, since all other types of chaotic
synchronous behavior are known to be particular cases of TSS
[11–13].

Along with the intensive study of the synchronous behavior
of the coupled chaotic oscillators, the careful attention of
scientists is paid to the dynamics observed in the vicinity
of the onset of the synchronization regime. Considering the
pretransitional behavior allows us to find the mechanisms
responsible for the formation and/or destruction of the syn-
chronous regime [14,15] and to reveal the essential features of
this type of dynamics [7,16,17].

It is well known that near the boundaries of chaotic synchro-
nization regimes the intermittent behavior can be observed,
when the desynchronization mechanism involves persistent
intermittent time intervals during which the synchronized
oscillations are interrupted by the nonsynchronous behavior.
These pretransitional intermittencies have been described
in detail for the onset of different types of synchronous
dynamics, such as lag synchronization [7,16], generalized
synchronization [17], phase synchronization [18–20] (except
for time scale synchronization), and their main statistical
properties have been shown to be common to other important
physical processes. Moreover, the intermittency is not limited
to the physical objects, it is observed widely in nature, e.g.,
in the living systems [21]. At the same time, as has been
mentioned above, the pretransitional system behavior has
not been studied hitherto for the time scale synchronization
regime.

In this Brief Report we report on the intermittent behavior
observed near the boundary of the range of the synchronous
time scales of chaotic oscillators, which are in the time scale
synchronization regime [11–13]. Having studied this type of
behavior both experimentally and numerically we came to the

conclusion that ring intermittency [20] takes place in the case
under study.

The time scale synchronization regime means the presence
of the synchronous dynamics in a certain range [sl ; sh] of
the time scales s, introduced with the help of the continuous
wavelet transform [22],

W (s,t0) = 1√
s

∫ +∞

−∞
x(t)ψ∗

(
t − t0

s

)
dt, (1)

with the Morlet mother wavelet function ψ(η) =
(1/ 4

√
π ) exp(j�0η) exp(−η2/2), �0 = 2π . Each of the time

scales can be characterized by the phase ϕ(s,t) = arg W (s,t),
where W (s,t) is the complex wavelet surface given by
Eq. (1). For the two coupled chaotic systems x1,2(t) time
scale synchronization takes place, if there is the range of the
synchronous time scales s ∈ [sl ; sh] where the phase locking
condition

|ϕ1(s,t) − ϕ2(s,t)| < const (2)

is satisfied and the part of the wavelet spectrum energy fallen in
this range is not equal to zero, Esnhr = ∫ sh

sl
〈|W (s,t)|2〉 ds > 0.

The intermittent behavior near the boundary of the range
of the synchronous time scales of chaotic oscillators being
in the time scale synchronization regime has been studied
experimentally (Fig. 1). In the experiment we have used
a simple electronic oscillator where all parameters may
be controlled precisely. As a basis element of the scheme
we have used the generator with the linear feedback and
nonlinear converter (NC) [24]. The coupling strength between
generators has been governed by resistor Rε (Fig. 1). The
main frequencies of the autonomous chaotic oscillations have
been f1 = 9.975 kHz and f2 = 9.522 kHz for the drive and
response systems, respectively. The behavior of the coupled
oscillators has been analyzed by means of the Agilent E4402B
spectrum analyzer and L-Card L-783 analog-digital converter
(ADC) PCI card with 12-bit resolution.

For the coupling resistor value Rε = 340 � the oscillators
under study demonstrate the time scale synchronization
regime (which may be considered for the given values
of the control parameters also as phase synchronization),
with the range of the synchronous time scales being
s ∈ [sl ; sh], sl ≈ 80.20 μs, sh ≈ 122.00 μs. In other words,
for s ∈ [sl ; sh] the synchronous dynamics is observed, since
the phase locking condition (2) is satisfied. For the time
scales s being outside this area the dynamics of the phase
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FIG. 1. Schematic diagram of the experimental setup. The control
parameters have been selected as the following: R1 = 10 �, R2 =
630 �, R3 = 56 �, L = 3.3 mH, C = 150 nF, C1 = 330 nF, C2 =
300 nF. The operational amplifiers OP1, OP2, OP4, and OP5 are of
the TL082 type and the operational amplifier OP3 is of the TDA2030
type. The nonlinear converter used is the same as in [23] (Fig. 7).

difference �ϕ(s,t) = ϕ1(s,t) − ϕ2(s,t) features time intervals
of the synchronized motion (laminar phases) persistently and
intermittently interrupted by sudden phase slips (turbulent
phases) during which the value of |�ϕ(s,t)| jumps up by
2π . In other words, for time scales s lying both below sl

and above sh the intermittent behavior is observed, with the
observation time scale s being a criticality parameter. Note
that the time scale parameter s is not a parameter of the
original dynamical system (but a parameter of observation),
although usually intermittency is observed by changing a
control parameter of the dynamical system under study. For
s → sl− and s → sh+ the mean length 〈l〉 of the laminar
phase goes to infinity whereas the turbulent phases become
very rare events. Alternatively, away from the boundaries
of the synchronous time scales, for s < st and s < st ′ the
phase slips take place with great regularity that means the
presence of the asynchronous dynamics on the observation
time scale. The schematic representation of the relationship
between the observed regimes and time scales s is shown in
Fig. 2. Note also that since the dynamics of the original system
does not depend on the observation time scale s, from the
point of view of the phase synchronization theory, the phase
synchronization regime takes place for Rε = 340 �.

Having studied the characteristics of intermittency, such
as the laminar phase distribution, the dependence of the
mean length of the laminar phases, and the probability of

s

12 23 3

st sl st ’sh

FIG. 2. (Color online) Schematic representation of the regimes
observed for the different values of the observation time scale s.
1: synchronous dynamics; 2: intermittent behavior; 3: asynchronous
behavior. The coupling strength between oscillators is supposed to be
fixed.

the turbulent phase detection, we have come to the conclusion
that the observed type of the intermittent behavior taking place
near the boundary of the range of the synchronous time scales
of chaotic oscillators being in the time scale synchronization
regime should be classified as a ring intermittency [20]. Indeed,
in [20] it has been shown that the ring intermittency is
characterized by the exponential distribution of the laminar
phase lengths

N (l) ∼ exp(−kl), k = const (3)

whereas the dependence of the mean length 〈l〉 of the laminar
phases on the criticality parameter s obeys the law

〈l(s)〉 = T {1 − ln−1[1 − p(s)]}, (4)

where T = 〈l(st )〉 is a mean length of the laminar phase for the
time scale st bounding the region of ring intermittency, p(s)
is the probability of detecting the turbulent phase on the time
interval of the observation with the length T on the time scale s.
Typically, the dependence of the probability p on the criticality
parameter is close to linear, and therefore, for s < sl ,1 Eq. (4)
may be rewritten in the form

〈l(s)〉 � T

[
1 − ln−1

(
s − st

sl − st

)]
. (5)

The time scale st corresponds to the lower boundary of the
linear form of the dependence p(s) and may be determined
from the condition p(st ) = 1. The theoretical relation (5) is
applicable only in the range st < s < sl .

To separate in the experimental time series the laminar
phases from the turbulent ones we have used the approach
described in [25]. The distribution of the laminar phase
lengths obtained experimentally for three different time scales
s1 = 79.50 μs (line 1, symbols “ + ”), s2 = 79.37 μs (line 2,
symbols “
”), and s3 = 78.50 μs (line 3, symbols “◦”) are
shown in Fig. 3(a). One can see that the experimentally
obtained distributions of the laminar phase lengths agree very
well with the theoretical predictions for ring intermittency
(3) given in [20]. The dependence of the mean length of
the laminar phase 〈l〉 on the time scale s (playing a role of
the criticality parameter) is also in strict accordance with the
theoretical law (4), with the probability p of detecting the
turbulent phase on the observation time interval with length
T = 1.0 ms obeying the linear law [Figs. 3(b) and 3(c),
respectively].

So, we came to the conclusion that the intermittent behavior
observed near the boundary of the range of the synchronous
time scales of the considered chaotic oscillators being in the
regime of time scale synchronization should be classified
as ring intermittency. The fact that the mechanism resulting
in the phase slips on the certain time scales in the system
under study is exactly the same as in the case of ring
intermittency is irrefutable evidence of the correctness of the
decision made above. Indeed, the origin of the intermittent
behavior for the ring intermittency regime is connected
with the events when the phase trajectory on the plane

1The analogous relation may be also deduced easily for s > sh, in
this case 〈l(s)〉 � T {1 − ln−1[(st ′ − s)/(st ′ − sh)]}.
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FIG. 3. (Color online) (a) Laminar phase length distributions
for the different values of the observation time scales s obtained
experimentally (points) and the theoretical curves (3) corresponding
to them. All distributions are normalized on the maximal values.
(b) Mean length 〈l〉 of the laminar phase vs the observation time scale
s obtained experimentally for two coupled chaotic oscillators and
the theoretical curve (5) shown by the red solid line (sl = 80.20 μs,
st = 63.73 μs). (c) Dependence of the probability p of detecting the
turbulent phase on the observation time interval with the length T on
the time scale s.

rotating according to the drive system state starts enveloping
the origin (see [20] for details), and the phase slips are
observed all the times that the phase trajectory envelops
the origin of that plane. If we consider x1,2 = Re W1,2(s,t)
and y1,2 = ImW1,2(s,t) as the variables determining the
system state, then on the rotating plane (x ′; y ′), where,
in accordance with [20], x ′ = x2 cos ϕ1(s,t) + y2 sin ϕ1(s,t),
y ′ = −x2 sin ϕ1(s,t) + y2 cos ϕ1(s,t), the ring intermittency
mechanism is revealed evidently. Indeed, in the region of
the intermittent behavior the trajectory envelops the zero of
the coordinate system (see Fig. 4), with the boundary of the
synchronous time scales sl corresponding to the situation when
the trajectory of the second system starts enveloping the origin
of the rotating plane. When the observation time scale s is
shifted from sl to st the trajectory on the rotating plane envelops
the origin more and more often, and for s ≈ st this event is
observed with great regularity [Fig. 4(c)] in accordance with
the ring intermittency theory [20].

To prove the generality of our findings we have also studied
numerically the intermittent behavior near the boundary of the
range of the synchronous time scales for two coupled chaotic
Rössler oscillators,

ẋd = −ωdyd − zd, ẋr = −ωryr − zr + ε(xd − xr ),
ẏd = ωdxd + ayd, ẏr = ωrxr + ayr,

żd = p + zd (xd − c), żr = p + zr (xr − c),
(6)

where (xd,yd,zd ) [(xr,yr ,zr )] are the Cartesian coordinates
of the drive (response) oscillator, dots stand for temporal
derivatives, and ε is a parameter ruling the coupling strength.
The other control parameters of Eq. (6) have been set to a =
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FIG. 4. (Color online) Trajectory of the second system on the
rotating (x ′,y ′) plane when the observation time scale is selected as
(a) s = 81.00 μs, the synchronous dynamics; (b) s = 77.50 μs, the
ring intermittency; (c) s = 63.5 μs, the asynchronous dynamics.

0.15, p = 0.2, c = 10.0. The ωr parameter has been selected
to be ωr = 0.95; the analogous parameter for the drive system
has been fixed to ωd = 0.93. For such a choice of the parameter
values the boundary of the time scale synchronization regime
occurs around εc ≈ 0.045, with the boundaries of the range of
the synchronous time scales being sl = 4.99, sh = 8.25.

The distributions of the laminar phase lengths detected on
the asynchronous scales for two coupled Rössler systems (6)
being in the time scale synchronization regime are shown in
Fig. 5(a). Again, as well as for the experimental data (compare
with Fig. 3) the excellent agreement between the calculated
distributions and theoretical exponential law (3) is observed.
As far as the dependence of the mean length of the laminar
phases on the criticality parameter (i.e., the observation time
scale s) is concerned [see Fig. 5(b)], the obtained curve
also corresponds to the theoretical relation reported in [20]
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FIG. 5. (Color online) (a) Laminar phase length distributions for
three different values of the observation time scales s (line 1 and red
points �: s1 = 4.98; line 2 and green points 
: s2 = 4.94; line 3 and
blue points ◦: s3 = 4.92) and the theoretical curves (3) corresponding
to them. All distributions are normalized on the maximal values.
(b) Mean length 〈l〉 of the laminar phase vs the observation time
scale s obtained numerically for two coupled Rössler systems and
the theoretical curve (5) (st = 4.45, T = 8.00); (c) Dependence of
the probability p of detecting the turbulent phase on the observation
time interval with length T on the time scale s.
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for the ring intermittency regime. Moreover, the probability
p of detecting the turbulent phase on the observation time
interval with length T is found to be linear [Fig. 5(c)] that
also is evidence of the ring intermittency presence. Thus the
ring intermittency regime is detected on the asynchronous
time scales for two coupled Rössler systems being in the
regime of time scale synchronization as well as in the case
of the experimental study of two coupled chaotic generators.
Therefore we can make a decision that the ring intermittency is
a typical feature of the behavior observed on the asynchronous
time scales for synchronized coupled chaotic systems. At the
same time, if the coupling strength between oscillators is too
weak for the interacting systems to be synchronized, the ring
intermittency on the asynchronous time scales is not realized.

In conclusion, we have reported on the ring intermittency
observed near the boundary of the range of the synchronous
time scales of chaotic oscillators being in the time scale

synchronization regime. It may be observed in a certain
range of the observation time scales lying outside the area of
time scales where the synchronous behavior is detected. The
experimentally and numerically obtained data are in perfect
agreement with the theoretical equations reported in [20].
We expect that the very same phenomenon can be observed
in many other relevant circumstances, such as, e.g., laser
systems [19], or in the case of the interaction between the
main rhythmic processes in the human cardiovascular system
[6], etc.
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[14] D. Pazó et al., Chaos 13, 309 (2002).
[15] A. E. Hramov, A. A. Koronovskii, and M. K. Kurovskaya, Phys.

Rev. E 75, 036205 (2007).
[16] S. Boccaletti and D. L. Valladares, Phys. Rev. E 62, 7497 (2000).
[17] A. E. Hramov and A. A. Koronovskii, Europhys. Lett. 70, 169

(2005).
[18] A. S. Pikovsky et al., Chaos 7, 680 (1997).
[19] S. Boccaletti, E. Allaria, R. Meucci, and F. T. Arecchi, Phys.

Rev. Lett. 89, 194101 (2002).
[20] A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, and

S. Boccaletti, Phys. Rev. Lett. 97, 114101 (2006).
[21] J. L. Perez Velazquez et al.., Eur. J. Neurosci. 11, 2571 (1999);

J. L. Cabrera and J. G. Milton, Phys. Rev. Lett. 89, 158702
(2002); A. E. Hramov et al., Chaos 16, 043111 (2006).

[22] B. Torresani, Continuous Wavelet Transform (Savoire, Paris,
1995); A. A. Koronovskii and A. E. Hramov, Continuous
Wavelet Analysis and its Applications (in Russian) (Fizmatlit,
Moscow, 2003).

[23] A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, A. A.
Ovchinnikov, and S. Boccaletti, Phys. Rev. E 76, 026206 (2007).

[24] N. F. Rulkov, Chaos 6, 262 (1996).
[25] M. Zhuravlev et al., Tech. Phys. Lett. 36 (2010).

027201-4

http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1063/1.1857615
http://dx.doi.org/10.1038/nature04275
http://dx.doi.org/10.3367/UFNe.0179.200912c.1281
http://dx.doi.org/10.1038/35065745
http://dx.doi.org/10.1142/S0219477504001653
http://dx.doi.org/10.1103/PhysRevE.75.056207
http://dx.doi.org/10.1103/PhysRevE.75.056207
http://dx.doi.org/10.1103/PhysRevE.73.026208
http://dx.doi.org/10.1103/PhysRevLett.78.4193
http://dx.doi.org/10.1103/PhysRevLett.78.4193
http://dx.doi.org/10.1016/0167-2789(89)90085-7
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1063/1.1775991
http://dx.doi.org/10.1016/j.physd.2005.05.008
http://dx.doi.org/10.1016/j.physd.2005.05.008
http://dx.doi.org/10.1103/PhysRevE.71.056204
http://dx.doi.org/10.1063/1.1518430
http://dx.doi.org/10.1103/PhysRevE.75.036205
http://dx.doi.org/10.1103/PhysRevE.75.036205
http://dx.doi.org/10.1103/PhysRevE.62.7497
http://dx.doi.org/10.1209/epl/i2004-10488-6
http://dx.doi.org/10.1209/epl/i2004-10488-6
http://dx.doi.org/10.1063/1.166265
http://dx.doi.org/10.1103/PhysRevLett.89.194101
http://dx.doi.org/10.1103/PhysRevLett.89.194101
http://dx.doi.org/10.1103/PhysRevLett.97.114101
http://dx.doi.org/10.1046/j.1460-9568.1999.00688.x
http://dx.doi.org/10.1103/PhysRevLett.89.158702
http://dx.doi.org/10.1103/PhysRevLett.89.158702
http://dx.doi.org/10.1063/1.2360505
http://dx.doi.org/10.1103/PhysRevE.76.026206
http://dx.doi.org/10.1063/1.166174
http://dx.doi.org/10.1134/S1063785010050202

