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Are generalized synchronization and noise-induced synchronization
identical types of synchronous behavior of chaotic oscillators?
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Abstract

This Letter deals with two types of synchronous behavior of chaotic oscillators—generalized synchronization and noise-induced synchroniza-
tion. It has been shown that both these types of synchronization are caused by similar mechanisms and should be considered as the same type of
the chaotic oscillator behavior. The mechanisms resulting in the generalized synchronization are mostly similar to ones taking place in the case of
the noise-induced synchronization with biased noise.
© 2006 Elsevier B.V. All rights reserved.
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Synchronization of chaotic oscillators has been intensively
investigated recently. The chaotic synchronization plays an im-
portant role for the analysis of physiological and medicine data,
for a chaotic communication, etc. [1–6]. Traditionally, different
types of synchronous behavior of chaotic oscillators are dis-
tinguished. Each of them is characterized by its own features
and may be detected by specific methods which are different
for every synchronous regime [1,2]. The important aim of re-
search is finding the regularities of the chaotic synchronization
regimes and detecting a relationship between them [7–9]. In
particular, we have shown [9,10] that the different types of the
chaotic synchronization behavior of the flow systems (such as
phase synchronization, lag synchronization, generalized syn-
chronization, complete synchronization) may be considered as
one type of the synchronous dynamics, namely, time scale syn-
chronization. Obviously, it is important to develop the further
generalization of the chaotic synchronization theory to detect
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the common mechanisms resulting in arising the synchronous
behavior.

The aim of this work is to show that the two types of syn-
chronous behavior of the chaotic oscillators (the generalized
synchronization [11–17] and the noise-induced synchronization
[18–31]) which are traditionally supposed to be different are
caused by the same mechanisms and should be considered as
one phenomenon.

The generalized synchronization regime (GS) in two unidi-
rectionally coupled chaotic oscillators means the presence of a
functional relation u(t) = F[x(t)] between the state vectors of
the drive x(t) and the response u(t) systems [11,12]. This rela-
tion may be rather complicated and the method of detecting it is
usually non-trivial. Depending on the character of this relation
F[·]—smooth or fractal—GS is divided into the strong and the
weak ones [12], respectively. It is also important to note that the
distinct dynamical systems (including the systems with the dif-
ferent dimension of the phase space) may be used as the drive
and response oscillators.

To detect the generalized synchronization regime the auxil-
iary system approach [14] may be used. In this case the behav-
ior of the response system u(t) is considered together with the
auxiliary system v(t) one. The auxiliary system is equivalent
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to the response one, but the initial conditions must be differ-
ent, i.e., v(t0) �= u(t0), although both v(t0) and u(t0) have to
belong to the same basin of chaotic attractors (if there is the
multistability in the system). If GS takes place in the unidi-
rectionally coupled chaotic oscillators, the system states u(t)

and v(t) become equivalent after the transient is finished due to
the existence of the relations u(t) = F[x(t)] and v(t) = F[x(t)].
Thus, the coincidence of the state vectors of the response and
the auxiliary systems u(t) ≡ v(t) is considered as a criterion of
the GS regime presence.

The generalized synchronization regime may also be de-
tected by means of the conditional Lyapunov exponent cal-
culation [12]. GS arises in the system of two unidirectionally
coupled chaotic oscillators only if the highest Lyapunov condi-
tional exponent is negative [12].

The noise-induced synchronization [18–21,26,27] means
that two identical non-coupled chaotic oscillators v(t) and u(t)

are driven by the common external noise ξ(t). The external
noise may result in the consistence of the vector states of the
considered systems after the transient is finished. The noise-
induced synchronization as well as GS may be realized only if
all conditional Lyapunov exponents are negative [32–34].

It has been shown in earlier articles that it is not always pos-
sible to observe the noise-induced synchronization in chaotic
oscillators, because in this case the chaotic system must dis-
play particular properties in the phase space (large contraction
region, limited expansion region, and a permanence time that
within the expansion region is greater than in the contraction re-
gion) [29,30]. At the same time it is necessary to emphasize that
biased noise is not a pure noise-induced transition, and there-
fore contraction regions in that case do not play a crucial role.

It is known that there are two similar mechanisms caus-
ing noise-induced synchronization appearance: (i) the external
noise signal ξ(t) has the mean non-zero value that results in
“moving” the system to the non-chaotic regime [35–40]. In
this case the states of the dynamical systems follow the exter-
nal noise ξ(t) in the same way, and, accordingly, they coincide
with each other; (ii) the external noise with the large amplitude
(perhaps, with the zero mean value) moves the image point cor-
responding to the system state to the region of the phase space
with the strong dissipation. In other words, the external noise
allows the system to spend more time in the region of the phase
space where the convergence of the phase trajectories takes
place [27–31,41–45]. So, in both cases the convergence of the
phase trajectories and, correspondingly, the phase flow contrac-
tion, play the main role in the noise-induced synchronization
appearance. One can say, that the noise-induced synchroniza-
tion is caused by introducing the additional dissipation into the
system either by means of the bias of the noise or with the help
of the large noise amplitude.

The similar effects concerning introducing the additional
dissipation in the system result in the generalized synchroniza-
tion regime appearance. As it has been shown in our works
[46,47], there are also two mechanisms causing the GS exis-
tence. The first of them is realized if GS takes place in two
systems with unidirectional dissipative coupling. For such sit-
uation the equations describing the system dynamics may be
written as

ẋ(t) = H
(
x(t)

)
,

(1)u̇(t) = H
(
u(t)

) + εA
(
x(t) − u(t)

)
,

where A = {δij } is the coupling matrix, ε is the control para-
meter characterizing the coupling strength between the chaotic
oscillators, δii = 0 or 1, δij = 0 (i �= j ). In this case one can see
that the response system u(t) may be considered as a modified
system

(2)u̇m(t) = H′(um(t), ε
)

(where H′(u(t)) = H(u(t)) − εAu(t)) under the external force
εAx(t):

(3)u̇m(t) = H′(um(t), ε
) + εAx(t).

It is easy to see that the term −εAu(t) brings the additional
dissipation into the system (2). Indeed, the phase flow contrac-
tion is characterized by means of the vector field divergence.
Obviously, the vector field divergences of the modified and the
response systems are related with each other as

(4)div H′ = div H − ε

N∑
i=1

δii

(where N is the dimension of the modified system phase
space), respectively. So, the dissipation in the modified system
is greater than in the response one and it increases with growth
of the coupling strength ε.

The generalized synchronization regime arising in (1) may
be considered as a result of two cooperative processes taking
place simultaneously. The first of them is the growth of the dis-
sipation in the system (2) and the second one is an increase of
the amplitude of the external signal. Evidently, both processes
are correlated with each other by means of parameter ε and
cannot be realized in the coupled oscillator system (1) indepen-
dently. Nevertheless, it is clear, that an increase of the dissi-
pation in the modified system (2) results in the simplification
of its behavior and the transition from the chaotic oscillations
to the periodic ones. Moreover, if the additional dissipation is
large enough the stationary fixed state may be realized in the
modified system. On the contrary, the external chaotic force
εAx(t) tends to complicate the behavior of the modified system
and impose its own dynamics on it. Obviously, the generalized
synchronization regime may not appear unless own chaotic dy-
namics of the modified system is suppressed.

One can see that in this case the reasons resulting in the gen-
eralized synchronization arising are very similar to the mech-
anisms which may be revealed for the noise-induced synchro-
nization with biased noise. Indeed, as well as in the case of the
biased noise the system state is moved by the deterministic ef-
fect to the non-chaotic regime and, as result, the generalized
regime may be detected.

The second mechanism of GS arising is realized when two
oscillators are coupled in the unidirectional non-dissipative
way. In this case the signal of the master oscillator should be
introduced with the large amplitude into the response system.
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This signal moves the response system state in the region of the
phase space with the strong dissipation (see, e.g., [46]) as well
as in the case of the noise-induced synchronization. Both mech-
anisms of GS arising are characterized by the convergence of
the phase trajectories and all conditional Lyapunov exponents
are negative in these cases. It should be noted that in [47] it
was shown that both mechanisms lead to the GS regime onset
simultaneously.

So, one can see, that the noise-induced synchronization and
the generalized synchronization regimes are caused by the same
mechanism. In most cases this mechanism is the suppression
of own chaotic dynamics of the response system by means of
the non-zero mean of the noise, or with the help of the addi-
tional dissipative term, or by moving the system state into the
regions of the phase space with the strong convergence of the
phase trajectories. It should be noted, that it is not a rigorous
mathematical proof, but the given arguments seem to be quite
convincing for understanding the unified character of these two
phenomena.

The equivalence of these two types of the synchronous be-
havior may also be illustrated by the following conclusion: the
noise-induced synchronization regime means the presence of
the functional relationship F[·] between the chaotic oscilla-
tor state and the stochastic signal. Indeed, two identical sys-
tems u(t) and v(t) driven by the common stochastic force
ξ(t) in the regime of the noise-induced synchronization be-
have equivalently, i.e., u(t) = v(t). Obviously, u(t) = Fu[ξ(t)]
and v(t) = Fv[ξ(t)], where Fu[·] and Fv[·] are some functional
dependences, distinct for the different initial conditions. Nev-
ertheless, in the noise-induced synchronization regime after the
transient is finished the vector states of considered systems co-
incide with each other, therefore, Fu[·] ≡ Fv[·] ≡ F[·] indepen-
dently on the initial conditions. So, in the case of the noise-
induced synchronization the following functional relation takes
place: u(t) = v(t) = F[ξ(t)]. The same statement is used for
the generalized synchronization definition, when the response
system is driven by the chaotic signal instead of the stochastic
one.

Let us show, that the generalized synchronization regime
may be obtained if the drive chaotic system is replaced by
the noise signal. This effect may also be treated as the noise-
induced synchronization. As the first example of such system
behavior let us consider the unidirectionally coupled logistic
maps

xn+1 = f (xn),

(5)yn+1 = f (yn) + ε
(
f (xn) − f (yn)

)
,

where f (x) = ax(1 − x), a is the control parameter, ε is the
coupling strength. The presence of the GS regime in this sys-
tem for some values of the coupling strength ε has been shown
(see [12]). Let us consider now the behavior of the response
system yn when the dynamics of x variable is not determined
by the dynamical system (5), but it is the stochastic process ξn

which is characterized by the probability distribution p(ξ). In
this case the dynamics of the response system is described by
Fig. 1. The planes (ξn, yn) and (yn, vn) of the logistic maps for the coupling
strength ε = 0.125 (a), (b), and ε = 0.175 (c), (d). It is clear that in the case (d)
the response yn and the auxiliary vn systems demonstrate the identical behavior
yn = vn that testifies the presence of the functional relationship yn = F[ξn],
and, therefore, the establishment of the synchronization regime.

the equation

(6)yn+1 = f (yn) + ε
(
f (ξn) − f (yn)

)
.

We have shown that the synchronous dynamics between the sto-
chastic process and the state of the dynamical system can also
take place in spite of the random character of ξ as well as in the
cases of the generalized synchronization or the synchronization
induced by the noise. This effect is very similar to the noise
induced synchronization with biased noise although the move-
ment of the system state into non-chaotic regime is caused by
the term −εf (yn) instead of the bias of noise.

To detect the presence of the relationship between the sto-
chastic process ξn and the state yn of the dynamical system we
have used the auxiliary system approach described above. The
behavior of the response and the auxiliary systems is shown in
Fig. 1(b) when the parameters have been selected as a = 3.75
and ε = 0.125, the probability distribution of the random vari-
able ξn is

(7)p(ξ) = 1√
2πσ

exp

(
− (ξ − ξ0)

2

2σ 2

)
,

where ξ0 = 1/2, σ = 0.11.1

It is clear, the response and the auxiliary systems are char-
acterized by the different states in the same moment of discrete

1 It is important to note that the character of the distribution of the random
variable ξ does not matter and the similar results may be observed for the others
types of the probability distribution p(ξ), for example, for the uniform one.
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time when the coupling strength is small enough (ε = 0.125).
The points corresponding to the states of the response and the
auxiliary systems are spread over all area (yn, vn). It means that
there are no functional relation between the stochastic process
ξn and the state yn of the dynamical system.

With increasing the coupling strength (ε = 0.175) the behav-
ior of the considered system is radically changed (see Fig. 1(d)).
The points corresponding to the state of the considered sys-
tems are on the straight line vn = yn. Therefore, the relationship
yn = F[ξn] takes place and the synchronous behavior is ob-
served. It is important to note, that the functional relationship
F[·] is fractal (see Fig. 1(c)) that corresponds to the case of
the weak synchronization [12]. Nobody can detect the pres-
ence of the functional relationship between ξn and yn taking
into account (ξ, y)-plane only (compare Fig. 1(a) when the

Fig. 2. The dependence of the conditional Lyapunov exponent λc of the sys-
tem (6) on the coupling strength ε. The stochastic signal is characterized by the
normal distribution (7), the onset of the synchronization is marked by an arrow.
synchronous regime is not observed and Fig. 1(c) when the syn-
chronization takes place, respectively).

The presence of the synchronous regime is also confirmed
by the dependence of the conditional Lyapunov exponent λc on
the coupling strength ε (Fig. 2). One can see that λc is posi-
tive for the small values of the coupling parameter, therefore,
there is no the functional relationship between ξn and yn. When
the coupling strength increases the conditional Lyapunov expo-
nent λc becomes negative, therefore, the synchronous regime
is detected and the relationship yn = F[ξn] between stochastic
process ξn and the state yn of the logistic map (6) takes place.

The analogous results have been obtained for the Rössler
system under the external stochastic signal. As in the case of
the first example (6) let us replace the dynamics of the drive
system by the stochastic process ξn. The investigated system
has the following form:

ẋr = −ωryr − zr + ε(ξn − xr),

ẏr = ωrxr + ayr,

(8)żr = p + zr (xr − c),

where a = 0.15, p = 0.2, c = 10.0, ωr = 0.95 are the control
parameter values, ξ0 = 0, σ = 11.2 are mean value and disper-
sion of probability distribution function (7) of random value ξn,
respectively. As well as for the logistic map with noise term
(see Eq. (6)) the observed effect is similar to the noise-induced
synchronization with biased noise.

For ε = 0.05 (see Fig. 3(a), (b)) the noise-induced syn-
chronization does not observed, i.e., all points on (x, v)-plane
characterizing response and auxiliary systems states are spread
Fig. 3. The planes (ξn, x) and (x, v) of the Rössler systems for the coupling strength ε = 0.05 (a), (b), and ε = 0.15 (c), (d). It is clear that in the case (d) the
synchronization regime is observed.
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randomly. When the coupling parameter increases (ε = 0.15),
the response and auxiliary systems demonstrate identical be-
havior (see Fig. 3(d)). This situation also corresponds to the
case of weak GS synchronization (see Fig. 3(c)). It should be
noted that the external stochastic signal has been introduced in
system (8) in the way that is typical for the mutually coupled
oscillators when the GS regime takes place. Alternatively, this
coupling term is not typical for the system where noise-induced
synchronization is observed. We think that this example is an
additional argument confirming our conclusion.

In conclusion, we argue that the generalized synchroniza-
tion and the noise-induced synchronization regimes are caused
by the same mechanism. As it has been mentioned above, this
mechanism is the suppression of own chaotic dynamics of the
response system by means of introducing the additional dissi-
pation. The additional dissipation may be introduced into the
system either by means of the mean non-zero value of the noise,
or with the help of the additional dissipative term, or by mov-
ing the system state into the regions of the phase space with
the strong convergence of the phase trajectories. Typically, the
mechanisms resulting in the generalized synchronization act
like ones in the case of the noise-induced synchronization with
biased noise when the system state is moved (by means of
the dissipative term or biased noise) to the non-chaotic regime.
Nevertheless, the other mechanism corresponding to the move-
ment of the system state into the regions of the phase space with
the strong dissipation by means of the external signal with large
amplitude or by means of large zero-mean noise may also take
place (see, e.g., [12,27]).

So, the difference between the generalized synchronization
and the noise-induced synchronization is only in character of
the driving signal. In case of the noise-induced synchroniza-
tion the stochastic signal drives the chaotic oscillator, while in
the case of the generalized synchronization the signal of an-
other chaotic dynamical system is used. That is why the system
with the different dimensions of the phase space may be used to
obtain the generalized synchronization regime. Obviously, the
identity of the system is not required in this case and, in general,
the driving signal may be arbitrary. Although the generalized
synchronization and the noise-induced synchronization are tra-
ditionally distinguished as different types of the synchronous
behavior, it may be appropriate and useful to consider them as
one type of the synchronous behavior caused by one reason.
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