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Abstract

The appearance of the chaotic synchronization regimes has been discovered for the coupled spatially extended beam–plasma Pierce systems.
The coupling was introduced only on the right bound of each subsystem. It has been shown that with coupling increase the spatially extended
beam–plasma systems show the transition from asynchronous behavior to the phase synchronization and then to the complete synchronization
regime. For the consideration of the chaotic synchronization we used the concept of time-scale synchronization described in work [A.E. Hramov,
A.A. Koronovskii, Chaos 14 (3) (2004) 603] and based on the introduction of the continuous set of phases of chaotic signal. In case of unidi-
rectional coupling the generalized synchronization regime has been observed in the spatially extended beam–plasma systems. The generalized
synchronization appearance mechanism has been analyzed by means of the offered modified system approach [A.E. Hramov, A.A. Koronovskii,
Phys. Rev. E 71 (6) (2005) 067201].
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of the chaotic synchronization phenomenon in
various nature systems becomes an area of active research of
nonlinear science [1–4]. The chaotic synchronization regime
has been observed in a whole series of coupled physical, bio-
logical, physiological, chemical and other systems [1,4–7]. At
present, several different types of chaotic synchronization are
known such as generalized synchronization [8], phase synchro-
nization [4,9], lag synchronization [10], intermittent lag [11]
and intermittent generalized [12] synchronization behaviour,
noise-induced synchronization [13], complete synchronization
[14] and time-scale synchronization [15,16], which generalizes
the above-listed types of chaotic synchronization [15,17,18].
The various methods of analysis should be used to detect the
different synchronization regimes [9,10,15,16,19–21].

* Corresponding author.
E-mail addresses: filatov_ra@mail.ru (R.A. Filatov),

aeh@cas.ssu.runnet.ru (A.E. Hramov), alkor@cas.ssu.runnet.ru
(A.A. Koronovskii).
0375-9601/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2006.05.039
The presence of the generalized synchronization [8] means
that there is a functional relation x2(t) = F[x1(t)] between
the response x2(t) and drive x1(t) chaotic systems states af-
ter the transient is finished. The phase synchronization [4,
9,21] means that phase locking of chaotic signals occurs,
while this signal amplitudes may remain uncoupled and look
chaotic. The regime of coupled oscillations called the lag-
synchronization regime, if the dynamics of each subsystem
occurs with some shift in time τ : x1(t) ≈ x2(t − τ). Finally,
complete synchronization [14] supposes identical dynamics
of chaotic oscillators: x1(t) ≈ x2(t). In our works [15,17] it
was shown that generalized, phase, lag- and complete syn-
chronization are closely related with each other and may be
considered as the particular cases of the same type of syn-
chronized oscillations which was called time-scale synchro-
nization. The character of the synchronized regime (phase,
generalized, lag- or complete synchronization) is determined
by the quantity of synchronized time scales, which are intro-
duced by the continuous wavelet transform [22–24]. Since the
time scale s is bound up with frequency, synchronization of
chaotic oscillations is connected with appearance of the phase
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coupling between spectral components ω of Fourier-spectra
S(ω) [16].

Most research dealing with chaotic synchronization were
realized for the systems with low number of degrees of free-
dom [2–4,14] and for the sample models of spatially extended
systems (chains and networks of coupled non-linear chaotic
oscillators [3,25–27], coupled Ginsburg–Landau [3,28,29] and
Kuramoto–Sivashinsky [30] equations and others). The study
of chaotic synchronization in the spatially extended systems
was experimentally an theoretically carried out for the non-
linear optical [31–33] and chemical [34] systems and for the
low-frequency oscillations in plasma discharge tubes [35,36].
It was shown that while introducing the unidirectional or sym-
metric coupling in the distributed systems they demonstrate the
various types of chaotic synchronization, namely the complete,
lag and generalized synchronization. However, the chaotic syn-
chronization in the locally coupled microwave beam–plasma
systems is not examined in detail by now. Besides, the transition
between various synchronization types are not well investigated
and obvious analogies between chaotic synchronization in the
spatially extended and low-dimensional systems are not for-
mulated. At the same time research of chaotic synchronization
regimes in spatially extended beam–plasma microwave systems
seems to be important because of its applications dealing with
data transmission [37–40] and control of chaotic oscillations in
microwave electronics systems (see, for example, [41]).

The present Letter deals with research of chaotic synchro-
nization in coupled beam–plasma microwave systems with
overcritical current—Pierce diode fluid models [42–44], which
seems to be interesting as an important model of beam–plasma
systems showing various types of chaotic behavior [43–48].

The Letter is organized as follows. In Section 2 the fluid
model of Pierce diode is briefly discussed. In Section 3 the com-
plete synchronization and time-scale synchronization of mu-
tual coupled beam–plasma systems are described. In Section 4
we discuss the generalized synchronization regime in unidirec-
tionally coupled spatially extended beam–plasma systems and
describe the method of modified system [49] applied to the dis-
cussed model. In conclusion, we summarize the main results
discussed in our Letter.

2. General formalism

Pierce diode [42–44] is one of the simple spatially extended
beam–plasma systems demonstrating chaotic dynamics [43–46,
48,50]. It consists of two infinite parallel plains pierced by a
mono-energetic electron beam (Fig. 1). Grids are grounded and
the distance between them is L. Charge density ρ0 and electron
velocity v0 are maintained constant at the system input. The
region between two plains is evenly filled by neutralizing sta-
tionary ions, whose density |ρi | is equal to the non-perturbed
beam electron density |ρ0|.

The only one dimensionless control parameter of this system
is Pierce parameter

α = ωpL/v0,
Fig. 1. Schematic diagram of Pierce diode.

where ωp is the electron beam–plasma frequency, v0 is the non-
perturbed electron velocity, L is the distance between diode
plains. This distributed model, though rather simple, demon-
strates many features of the electron beam dynamics in different
real electron devices such as virtual cathode oscillators (vir-
cators) [51,52]. With α > π , the so-called Pierce instability
develops in the system and the virtual cathode is formed in the
electron beam [42,44]. At the same time in a narrow range of
Pierce parameter values near α ∼ 3π the increase of the in-
stability is suppressed by the non-linearity and in the electron
beam the regime without reflection takes place [44,52]. In this
case the system may be described by fluid equations [43,44,
52]. It is known [43–46,48] that in this regime various types of
beam–plasma chaotic oscillations occur.

Dynamics of two coupled Pierce diodes in fluid electronic
approximation is described by the self-congruent system of di-
mensionless Poisson, continuity and motion equations:

(1)
∂2ϕ1,2

∂x2
= α2

1,2(ρ1,2 − 1),

(2)
∂ρ1,2

∂t
= −v1,2

∂ρ1,2

∂x
− ρ1,2

∂v1,2

∂x
,

(3)
∂v1,2

∂t
= −v1,2

∂v1,2

∂x1,2
− ∂ϕ1,2

∂x
,

with boundary conditions:

(4)v1,2(0, t) = 1, ρ1,2(0, t) = 1, ϕ1,2(0, t) = 0,

where indexes “1” and “2” relate to the first and the second
coupled beam–plasma systems respectively.

In Eqs. (1)–(3) dimensionless variables of potential ϕ, den-
sity ρ and velocity v of electron beam, spatial coordinate x

(0 � x � 1) and time t are connected with the corresponding
dimensional variables

ϕ′ = (
v2

0/η
)
ϕ, ρ′ = ρ0ρ,

(5)v′ = v0v, x′ = Lx, t ′ = (L/v0)t,

where symbols with prime correspond to dimensional variables,
η is the specific electron charge, v0 and ρ0 is the non-perturbed
velocity and density of an electron beam.

In the present Letter we study both mutual and unidirectional
coupling between Pierce diodes. Mutual coupling between sys-
tems is realized by the modulation of dimensionless potential
value on the right bounds of both systems:

(6)ϕ1,2(x = 1.0, t) = ε
{
ρ2,1(x = 1.0, t) − ρ1,2(x = 1.0, t)

}
.
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Fig. 2. Bifurcation diagram (a) and dependence of the largest Lyapunov expo-
nent (b) of autonomous Pierce diode oscillations on α parameter.

In case of unidirectional coupling the boundary conditions on
potential are defined in the following form:

(7)

{
ϕ1(1, t) = 0,

ϕ2(1, t) = ε(ρ1(x = 1, t) − ρ2(x = 1, t)),

where the first “1” (drive) system is in the autonomous oscilla-
tion regime effecting upon the second “2” (response) system.

Value ε is the coupling strength between systems in the time
depended boundary conditions, which describe mutual (6) and
unidirectional (7) coupling, and values ρ1,2(x = 1.0, t) present
oscillations of non-dimensional density of spatial charge, which
are registered at the output of the both systems. It may be car-
ried out experimentally by putting a cutoff of a spiral slow wave
system at the output of diode space [53], which register oscilla-
tions of electron beam charge density.

System of partial differential equations (1)–(3) has been in-
tegrated numerically using finite difference approximation. Nu-
merical solutions for continuity (2) and motion (3) equations
have been found by means of explicit scheme with differences
against flow, and Poisson equation (1) has been integrated us-
ing error vector propagation method [54]. The time and space
integration steps have been selected as �x = 0.005 and �t =
0.003.

It is well known [43–46,48], that in the autonomous fluid
model the transition to chaotic spatiotemporal dynamics of
spatial charge is observed via cascade of period doubling
bifurcations with α parameter decrease in the range α ∈
(2.85π,2.87π). This is shown in Fig. 2. where space charge
density oscillation bifurcation diagram at the point of the inter-
action space, x = 0.2, and dependence of the largest Lyapunov
exponent value on Pierce parameter are shown. Value of the
highest Lyapunov exponent λ has been calculated using Benet-
din algorithm adapted for an analysis of distributed system. It
is evident from Fig. 2 that with Pierce parameter α decrease the
oscillation complexity increases on average.

3. Complete and time-scale synchronization in mutual
coupled distributed chaotic systems

Let us consider the dynamics of the coupled Pierce diode
model (1)–(3) with mutual coupling (6) for the fixed Pierce
parameter value of the first system α1 = 2.861π and chang-
ing the control parameter α2 of the second system in the range
α ∈ (2.85π,2.87π). The chaotic dynamics is observed in this
range of parameters.

Numerical simulation showed that time-scale synchroniza-
tion may be observed for the small detuning between spatially
extended chaotic systems �α = α1 −α2. The appearance of the
time-scale synchronization regime is determined by the analy-
sis of phase difference dynamics on the various time-scales s.
A continuous set of phases φs(t) of chaotic time series was
introduced with the help of the continuous wavelet transform
[16–18]. Chaotic oscillations of spatial charge density ρ1,2(t)

at the point x = 0.2 of interaction space were examined as an
analyzed time series.

The main idea of the time-scale synchronization [15–18] is
in the following. Let us consider a continuous wavelet trans-
form of time series ξ(t)

(8)W(s, t0) =
+∞∫

−∞
ξ(t)ψ∗

s,t0
(t) dt,

where

ψs,t0(t) = 1√
s
ψ0

(
t − t0

s

)

is the wavelet-function related to the mother-wavelet ψ0(t). The
time scale s corresponds to the width of the wavelet function
ψs,t0(t), t0 is the shift of wavelet along the time axis (“∗” de-
notes complex conjugation) [22,24]. It should be noted that the
time scale is usually used instead of the frequency of the Fourier
transform and can be considered as the quantity inversed to it.

The Morlet wavelet [55]

ψ0(η) = (1/ 4
√

π ) exp(jω0η) exp
(−η2/2

)
has been used as a mother-wavelet function. The choice of para-
meter value ω0 = 2π provides the relation s = 1/f between the
time scale s of wavelet transform and frequency f of Fourier
transform.

The wavelet surface

(9)W(s, t0) = ∣∣W(s, t0)
∣∣ exp

[
jφs(t0)

]
describes the system dynamics on every time scale s at the mo-
ment of time t0. The value of |W(s, t0)| indicates the presence
and intensity of the time scale s at the moment of time t0. It is
also possible to consider the quantity

(10)
〈
E(s)

〉 =
∫ ∣∣W(s, t0)

∣∣2
dt0,
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which is the distribution of integral energy over time scales. At
the same time, the phase φs(t) = argW(s, t) is naturally intro-
duced for every time scale s. In other words, it is possible to
describe the behavior of each time scale s by means of its own
phase φs(t).

If there is a range of time scales [sm; sb], for which the phase
locking condition

(11)
∣∣φs1(t) − φs2(t)

∣∣ < const

is satisfied and the part of the wavelet spectrum energy (10) in
this range s ∈ [sm; sb] is not equal to zero

(12)Esnhr =
sb∫

sm

〈
E(s)

〉
ds > 0,

then we assert that time-scale synchronization between oscil-
lators takes place [15,17]. In the condition (11) φs1,2(t) are
continuous phases of the first and the second systems which
correspond to the synchronized time scales s.

Introducing a continuous set of time scales s and the instan-
taneous phases associated with them, as well as separation of
the range of synchronous time scales �s = s2 − s1 allows us to
inject the quantitative performance of a measure of chaotic syn-
chronization of coupled systems. This measure γ can be defined
as a part of wavelet spectrum energy falling on the synchronized
time scales:

(13)γ =
sb∫

sm

〈
E(s)

〉
ds

/ ∞∫
0

〈
E(s)

〉
ds,

where 〈E(s)〉 is the distribution of integral energy over time
scales, which is determined by relation (10). This measure γ is
equal to zero for non-synchronized oscillations, γ �= 0 means
that in the coupled systems the conditions of time-scale syn-
chronization (11) and (12) are implemented. The value γ ≈ 1
shows, that oscillations in each of subsystems are identical or
close to each other. Such regime is called the complete synchro-
nization regime. Growth of γ value from 0 up to 1 testifies the
increase of a part of the wavelet spectrum energy, falling on the
synchronous time scales s.

Let us revert to examination of mutual oscillations in the sys-
tem of Pierce diode fluid models.

The behavior of coupled beam–plasma systems is illustrated
by Fig. 3a, plotted for α1 = 2.861π and α2 = 2.860π , on which
the change of the synchronous time scales range sm and sb is
shown during an increase of the coupling parameter ε. From
Fig. 3a one can see, that for ε > 0.0007 the synchronous time
scales exist. This regime, as it was discussed above, corre-
sponds to the time-scale synchronization. The range of syn-
chronous scales increases while increasing coupling parameter
ε. For ε ≈ 0.08–0.1 the system’s dynamics becomes synchro-
nous virtually on the whole range of time scales—the regime
similar to lag synchronization appears in the coupled beam–
plasma systems and the value of time shift between the states
of the systems τ ≈ 0.07. Further, the time shift decreases with
the coupling parameter ε increase and the coupled system tends
to demonstrate the complete chaotic synchronization regime,
Fig. 3. Dependence of the lowest sm and the highest sb bounds of synchronous
time scales area (a) and dependencies of the identity measure � of chaotic
spatiotemporal oscillations (curves 1, 2) and value γ of conditional energy
(curves 3, 4), falling on the synchronous time scales (b), on the value of cou-
pling parameter ε for the small (α1/π = 2.860, α2/π = 2.861 (�)) and large
(α1/π = 2.860, α2/π = 2.858 (◦)) parameter detuning.

which is characterized by close to identical dynamics of each
of the coupled systems (τ ≈ 0).

When greater detuning of coupled beam–plasma system pa-
rameters �α occurs, the spectral distribution of oscillations in
electron beam becomes essentially more complicated and the
appearance of time-scale synchronization is observed for the
larger values of coupling strength. In Fig. 3a for the case of
α1 = 2.860π and α2 = 2.858π the corresponding boundaries
[sm, sb] of the synchronous time scales area are shown. Similar
to the described above, with ε parameter increase the range of
synchronous time scales appears and the system tends to show
the complete synchronization regime. However, it occurs under
essentially greater values of coupling parameters rather than it
was observed in case of small detuning. To analyze the degree
of vicinity the dependence of spatiotemporal chaotic oscilla-
tions identity measure �

� = 〈∣∣ρ1(x, t) − ρ2(x, t)
∣∣ + ∣∣v1(x, t) − v2(x, t)

∣∣
(14)+ ∣∣φ1(x, t) − φ2(x, t)

∣∣〉,
on the coupling parameter has been calculated for each of the
systems. In Eq. (14) the symbol 〈· · ·〉 means the averaging
by the time and the space. The results are shown in Fig. 3b
(curves 1, 2), from which one can see that function �(ε) de-
creases quickly tending to zero with the coupling parameter
increase. From Fig. 3b (◦) one can see that the value �, for
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Fig. 4. Control parameter plane (α2/π, ε) for the fixed value of α1 = 2.861π .
Boundary of the complete synchronization regime is shown.

the large parameter detuning remains unequal to zero (although
it becomes sufficiently small for ε > 0.17) apart from the case
of small detuning (Fig. 3b (�)). Oscillation regimes, for which
�(ε) ≈ 0, should be considered as the complete chaotic syn-
chronization regime.

As it was noted above, the synchronization measure γ (13) is
an important energetic characteristic of the synchronous behav-
ior of coupled spatially extended chaotic systems. In Fig. 3b
(curves 3, 4) the dependencies γ (ε) are shown for the sets of
control parameters α1,2 mentioned above. It is easy to see that
the increment of a part of chaotic spatiotemporal oscillation en-
ergy falling on the synchronous time scales takes place with the
coupling parameter increase. It corresponds to the convergence
of oscillations in each of spatially extended systems and, as a
result, to the appearance (for the greater values of coupling pa-
rameter) of the complete synchronization regime.

In Fig. 4 the boundary of complete synchronization area
plotted for fixed value of Pierce parameter α1 = 2.861π is
shown on the control parameter plane (α2, ε). From the fig-
ure one can see that the complete synchronization regime takes
place with the coupling parameter increase for all detunings of
control parameters α1,2 of either Pierce diode. It is fair both
for the weak chaotic oscillations and small parameter detun-
ing and for developed chaos even for great detuning between
control parameters of each subsystem. The minimal values of
coupling parameter ε, for which the complete synchronization
in spatially extended beam–plasma systems is observed, have
been detected for the small detuning of coupled subsystems.

4. Generalized synchronization in unidirectionaly coupled
Pierce diodes

Let us examine the generalized synchronization phenom-
enon in the considered coupled spatially extended systems. The
generalized synchronization has been introduced only for the
unidirectionaly coupled systems, therefore let us consider the
unidirectional coupling (7) between spatially extended Pierce
beam–plasma systems being in the chaotic oscillations regime.

We used auxiliary system approach [20] and the highest con-
ditional Lyapunov exponent calculating [19,56] for the general-
ized synchronization regime diagnostic. The main idea of the
auxiliary system approach is that along with the response sys-
tem xr (t) another (auxiliary) system being identical to it, xa(t),
is examined. Initial conditions for the auxiliary system xa(t0)

have to be chosen different from the response system initial
state xr (t0) but they should belong to the same chaotic attractor.
In the case of lack of the generalized synchronization regime
between interacting systems the state vectors of response xr (t)

and auxiliary xa(t) systems are different. And in the case of the
generalized synchronization regime presence, the states of the
response and auxiliary systems must be identical xr (t) ≡ xa(t)

after the transient in order to fulfill relations: xr (t) = F[xd(t)]
and, correspondingly, xa(t) = F[xd(t)]. Thus, the equivalence
of the response and auxiliary systems states after the transient
(which may be sufficiently long [12]) is a criterion of the gener-
alized synchronization regime presence between the drive and
response oscillators.

Analysis of the generalized synchronization regime also may
be realized by means of the conditional Lyapunov exponent cal-
culating [57]. In this case Lyapunov exponents are calculated
for the non-autonomous response system, and since the behav-
ior of this system depends on the drive system behavior these
Lyapunov exponents are called conditional. Negativity of the
largest conditional Lyapunov exponent λ is a criterion of the
generalized synchronization presence in unidirectionally cou-
pled dynamical systems [19,56].

While using auxiliary system approach the system of equa-
tions (1)–(3) has been solved for the auxiliary system Pierce
parameter value being equal to the response system control pa-
rameter, but with different initial conditions. It is useful for the
generalized synchronization regime diagnostics to plot the os-
cillation difference |ρ2(x, t) − ρa(x, t)| between the response
(ρ2(x, t)) and auxiliary (ρa(x, t)) system over all interaction
space. Results are presented in Fig. 5, from which one can see
that the charge density oscillations in the response and auxiliary
systems remain different over all interaction space for smaller
values of coupling parameter (Fig. 5a), and for the sufficiently
large values of ε oscillations in the response and auxiliary sys-
tems become identical (Fig. 5b), i.e. the generalized synchro-
nization regime appears in the coupled system.

Results obtained by using auxiliary system approach has
been confirmed by means of the highest conditional Lyapunov
exponent λ calculating. Numerical calculation of the highest
conditional Lyapunov exponent, as above, has been realized by
Benetdin’s algorithm adapted for distributed system analysis. In
Fig. 6a typical dependence of the highest conditional Lyapunov
exponent on the value of the coupling parameter is shown for
the values of parameters α1 = 2.858π and α2 = 2.862π . One
can see that for certain value of the coupling parameter ε = εGS
(marked by an arrow in Fig. 6) the generalized synchronization
regime appears in the spatially extended beam–plasma systems.
Thus, with the coupling parameter increase the appearance of
the generalized synchronization is observed in the spatially ex-
tended beam plasma system.

When fixing the first system control parameter and changing
parameter of the second system one can plot the dependence of
the generalized synchronization appearance threshold εGS on



306 R.A. Filatov et al. / Physics Letters A 358 (2006) 301–308
Fig. 5. Spatiotemporal evolution of the state difference |ρ2(x, t) − ρ2a(x, t)|
(values of spatial charge density) between the response and drive systems.
(a) ε = 0.05, the lack of the generalized synchronization regime, (b) ε = 0.2,
the chaotic generalized synchronization regime: after transient is finished in the
response and drive systems the same spatiotemporal states appear.

Fig. 6. Dependence of the highest conditional Lyapunov exponent on the cou-
pling parameter ε for the values of Pierce parameter of the drive and response
systems: α1 = 2.858π and α2 = 2.862π . The value of the coupling parame-
ter for which the generalized synchronization regime appears in the system (the
largest conditional Lyapunov exponent becomes negative) is marked by an ar-
row.

the detuning between systems. In Fig. 7a such dependence is
plotted for the fixed value of drive system control parameter;
one can see that with response system control parameter in-
crease (in other words with transition to the area of simpler
oscillations Fig. 2) the threshold of the generalized synchro-
nization arising decreases. In Fig. 7b the value of the threshold
of the generalized synchronization regime εGS has been plotted
for the fixed value of the response system control parameter α2
when changing parameter α1 of the drive system. One can see
that for the small detuning between the systems the value of the
Fig. 7. Dependence of generalized synchronization threshold εGS on the control
parameter of the drive α2 (a) and response α1 (b) distributed systems.

generalized synchronization threshold depends weakly on the
drive system parameter.

In our works [29,49] the various ways of the generalized
synchronization arising in the coupled less-dimensional sys-
tems and coupled spatially extended Ginzburg–Landau equa-
tions were discussed using the modified system approach. The
main idea of this method is the substitution of two unidirec-
tional coupled oscillator systems by the modified response sys-
tem being under external influence of the drive system signal.
This method was very helpful and effective for the analysis of
the generalized synchronization arising mechanisms connected
with presence of additional dissipation in the non-autonomous
chaotic system in the generalized synchronization regime [49].

Let us apply this method to the analysis of the generalized
synchronization arising mechanism in the coupled spatially ex-
tended beam–plasma systems. It is necessary to examine the
dynamics of the autonomous modified response system tak-
ing into account the introducing of the additional dissipative
term in the same way as it has been done in [49]. In our case
an autonomous modified distributed system is described by the
system of equations (1)–(3) with the following boundary con-
ditions for the potential

(15)

{
ϕ2m(0, t) = 0,

ϕ2m(1, t) = −ερ2m(1, t).

In this form the modified distributed system (1)–(3) may be
considered as a Pierce diode fluid model with a connected feed-
back loop. Similar system has been sufficiently investigated in
our work [48,58,59], here Pierce diode fluid model with ex-
ternal feedback has been examined. It has been shown for this
model, that with the feedback coefficient (in the investigated
case ε parameter) increase the transition from chaotic dynamic
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Fig. 8. Bifurcation diagrams of the spatial charge density oscillations in the
modified system in case of autonomous dynamics (a) and under the external
harmonic signal (b). Pierce parameter of modified system is α2 = 2.862π .

to periodical oscillations is observed through the cascade of the
period doubling bifurcations.

As it has been shown in work [49], the existence of the reg-
ular oscillations or steady states in the modified system is an
essential condition for the generalized synchronization regime
arising. Therefore, taking into account the results of work [48],
we can assert that, the mechanism of generalized synchroniza-
tion regime arising [49] is realized, but in the investigated case
it is determined by a reconstruction of oscillation regimes in
modified system by means of connection of the feedback of
some sort rather than introducing of additional dissipation.

It is illustrated by Fig. 8a, on which the bifurcation diagram
of Pierce diode with feedback is plotted while changing the
control parameter ε. From the figure one can see that, oscil-
lations in the modified system become periodical with coupling
parameter increase and after that the arising of the steady state
is observed. However, the value of the coupling parameter, for
which the arising of the periodical oscillations in system is ob-
served, is appreciably smaller than liminal value of εGS, for
which the generalized synchronization regime arises. As it was
discussed in work [49] it is necessary to consider the modi-
fied system under the external influence to find the generalized
synchronization threshold. In this case, the external influence
results in an increase of the parameter ε value, for which the
periodical oscillations is observed. Such behavior may be il-
lustrated by the examination of the modified system dynamics
under the external periodical influence. In the simplest case,
this influence may be assigned harmonic, whose frequency and
amplitude must correspond to the main base frequency of the
power spectrum of the drive chaotic system.

In this case we change the boundary conditions (15) for
modified system (1)–(3) adding a harmonic signal:

(16)

{
ϕm(0, t) = 0,

ϕm(1, t) = −ερr(1, t) + εA cos(2πf0t),

where A = 0.78 and f0 = 1 have been chosen to simulate the
main peak in the power spectrum of the drive system.

In Fig. 8b Pierce diode oscillation bifurcation diagram is
shown for the case of external influence. One can see that,
the bifurcation points of the modified system under the exter-
nal influence are shifted towards lager values of ε in compar-
ison with the autonomous case (Fig. 8a). At the same time,
two-frequency oscillations with incommensurable time scales
(quasi-periodical regular oscillations) are observed in the sys-
tem with the large values of feedback coefficient ε. This may be
easily seen from the bifurcation diagram. Therefore, the value
of parameter for which the generalized synchronization appears
accepts lager values that in autonomous case.

5. Conclusions

Thus, the possibility of arising of the various types of chaotic
synchronization (complete synchronization and time-scale syn-
chronization) in mutually coupled beam–plasma systems with
overcritical current (coupled Pierce diode fluid models) has
been reported for the first time in the Letter. It is important
to note that the coupling was introduced only in one point of
interaction space. A new approach to chaotic synchronization—
time-scale synchronization [15,17] has been used for the analy-
sis of chaotic synchronization. It is significant that the possibil-
ity of the complete synchronization regime appearance of the
chaotic spatiotemporal beam–plasma oscillation makes possi-
ble the application of such self-oscillating media for the data
transmission systems of the microwave range.

In case of unidirectional coupling the transition from asyn-
chronous behavior to the generalized synchronization regime
has been observed with the coupling parameter increase. For
the fixed control parameter (Pierce parameter) of the drive sys-
tem the generalized synchronization threshold decreases with
the response system Pierce parameter increase. For the fixed
value of the response system Pierce parameter the value of
coupling parameter corresponding to the generalized synchro-
nization regime arising depends weakly on the changing of the
drive system Pierce parameter. Such behavior of the generalized
synchronization appearance threshold was explained using the
modified system method proposed in work [49] for the analy-
sis of the generalized synchronization in the less-dimensional
systems.
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