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STABILITY OF THE SYNCHRONOUS STATE OF AN ARBITRARY NETWORK
OF COUPLED ELEMENTS

S. Boccaletti,1 A. A.Koronovsky,2 D. I. Trubetskov,2

A.E.Khramov,2 and A.E.Khramova2 ∗ UDC 621.385

We propose a method for determining the range of the coupling parameter for which the network of
slightly nonidentical chaotic oscillators demonstrates stable synchronous behavior. As an example
of using this method, we study the complete-synchronization regime of a network of nonidentical
Rössler oscillators.

Over the past decade, there has been active development of the theory of the so-called complex
networks whose structure is irregular and the elements demonstrate chaotic behavior [1, 2]. Interest in a
study of such networks is related to both the necessity of analyzing various natural, social, and engineering
objects and the importance of revealing fundamental aspects of chaotic synchronization in a system of many
coupled partial subsystems [3–6]. Special attention is paid to the networks characterized by high variability
in the power of interelement coupling [1].

The necessity of studying such networks is also stipulated by the nonlinear-antenna technique, which is
now actively developed [7–9]. The active module of a nonlinear antenna is developed on the basis of a network
of coupled elements demonstrating chaotic behavior [7, 8]. The nonlinear-antenna technique is based on use
of coupled nonlinear elements such as, e.g., radioengineering oscillators, as an active antenna module [8, 10,
11]. Varying the control parameters of a network of coupled oscillators and the interelement coupling, we
can observe either simultaneous existence of different synchronous clusters or complete synchronization in
the network. The latter allows us to obtain the specified directional pattern [8]. An important issue is to
ensure long-term constancy of the directional-pattern shape in the presence of external and internal noise.
In other words, the observed regime of complete synchronization should be stable to small perturbations.
Therefore, we should indicate the stability boundaries for a synchronous state of the entire network on the
whole. It is worth noting that conventional methods for calculating the stability boundaries for the problem
in question are almost useless [12]. For example, the standard procedure of plotting the Lyapunov-exponent
maps for a complex network which can comprise several tens of thousands of coupled elements involves
calculation of the same number of senior Lyapunov exponents, which requires huge computation time even
if modern computers are used.

At present, there exists a method for diagnosing the synchronous-regime stability of a network com-
prising any number of interacting identical elements, which is based on considering the largest Lyapunov
exponent [12, 13]. However, considering actual objects, e.g., the active module of a nonlinear antenna, we
should reject such an idealization as identity of the network elements. In this paper, we present a method
allowing us to diagnose the synchronous state of stability of a network of coupled nonidentical oscillators
with slightly nonidentical parameters. Slight nonidentity is understood as such a difference in the control-
parameter values that does not result in changes in the dynamical regime observed for a free element of the
network. In other words, we assume that the considered dynamical regime is rough.
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Let us consider a network consisting of N coupled dynamical systems with slightly nonidentical
control parameters:

ẋi = F(xi,gi) − σ

N∑

j=1

GijH[xj ], (1)

where i = 1, 2, . . . , N, xi is the state vector of the ith network element, the dot denotes the time derivative, F
is the nonlinear operator of the network-element evolution, H is the operator specifying the mutual coupling
of elements, gi is the vector of control parameters of the ith element, and σ is the coupling parameter. The
coupling-coefficient matrix G is chosen such that all N eigenvalues of the matrix are real and λ1 ≤ · · · ≤ λN .
In addition, the matrix G should satisfy the coupling-dissipativity condition Gii = −

∑
j �=i Gij ensuring the

possibility of existence of a completely synchronous regime of the network dynamics for which all the network
elements show identical behavior, i.e., xi(t) = xs(t), where i = 1, 2, . . . , N .

To explain the proposed method, we consider a network comprising identical elements such that
gi = g, where i = 1, 2, . . . , N . It was mentioned above that for such a network, we have a method allowing
us to calculate the range of the coupling parameter σ for which the synchronous state of system (1) is
stable [12, 13]:

xi(t) = xs(t), i = 1, 2, . . . , N. (2)

For brevity, the regime of complete synchronization (2) of all network elements is called the synchronous
state of the network.

The interval of the values of the coupling parameter σ for which the network is in the stable syn-
chronous state can be determined by using N linearized equations for a small deviation of the network state
[12, 14]

ζ̇i = [JF(xs,g) − σλiJH(xs)] ζi, (3)

where J is the Jacobian of the matrix G. Note that equations entering system (3) differ only by the
eigenvalues λ1 ≤ · · · ≤ λN of the coupling-coefficient matrix G. If we introduce the notation σλi = ν in
Eq. (3), then the largest Lyapunov exponent Λ [12] totally determines the synchronous-regime stability of
the dynamics of network (1). Obviously, the synchronous state xs(t) of the network is stable only if any
deviation from the synchronous dynamics decays with time. In other words, all Lyapunov exponents of
system (3) should be negative, except for the zero Lyapunov exponent λ1 = 0 characterizing the trajectory
motion on the synchronous attractor, i.e., λi < 0, where i = 2, . . . , N . Therefore, to analyze stability of
the synchronous state xs(t), it is sufficient to consider only one differential equation that depends on the
parameter ν and describes the dynamics of a small deviation ζ with time:

ζ̇ = [JF(xs,g) − νJH(xs)] ζ. (4)

Since the interelement interaction in the synchronous state is vanishingly small, the synchronous regime
xs(t) is described by the equation

ẋs(t) = F(xs(t),g). (5)

for one autonomous element of the network. Obviously, the synchronous state xs(t) is stable if a small
perturbation ζ(t) decays with time. The behavior of the small perturbation ζ(t) can be characterized using
the largest Lyapunov exponent which can be determined numerically [15].

The considered largest Lyapunov exponent Λ(ν) can be negative either on a finite interval Ist =
(ν1, ν2) of the values of the parameter ν [12] or an infinite interval (for example, ν2 = ∞), or on several
finite intervals (νi, νi+1), depending on a particular choice of the operators F and H. In what follows we
consider the case where the function Λ(ν) is negative on the interval (ν1, ν2), where ν2 can have both finite
and infinite values. Then the synchronous regime of the dynamics of network (1) for a certain value of
the coupling parameter σ is stable if the conditions σλ2 > ν1 and σλN < ν2 hold for the chosen value of
σ. The operators F and H determine the boundary values ν1 and ν2 of the stability interval Ist, and the
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eigenvalues λi of the coupling-coefficient matrix G are determined only by the network topology, i.e., the
interelement-coupling structure itself.

We now turn to analyzing the behavior of the networks consisting of the elements whose control
parameters are slightly nonidentical. In this case, Eq. (4) for the dynamics of a small deviation is no longer
valid, and the synchronous-state stability should be analyzed for initial system (1). Since the control-
parameter vector gi varies from one element to another, i.e., depends on the element number i, the invariant
manifold of the synchronous regime xi(t) = xs(t), where i = 1, 2, . . . , N , no longer exists for the dynamics
of network (1), and, correspondingly, the synchronous regime is not an invariant manifold in the case of
nonidentical elements.

However, it is shown in [16] that slight nonidentity of the control parameters of coupled systems
can be simulated by introducing identical elements of weak noise to the corresponding system. Then the
problem of determining the stability interval of synchronous regime of the network of nonidentical elements
can be reduced to analyzing the corresponding system of identical elements with the control-parameter
vector g = 〈gi〉, where the angular brackets denote averaging over all network elements. In this paper, using
numerical calculations, we show adequacy of such an approach to analysis of the synchronous regime of a
network comprising slightly nonidentical elements.

The proposed method can be demonstrated by an example of the well-known phenomenon [16] ob-
served in two coupled identical chaotic oscillators for which two bifurcation values of the coupling parameter
σ exist such that σ1 < σ2. The coupling-parameter value σ1 determines the onset time of the blowout bifur-
cation when the maximum transversal Lyapunov exponent crosses zero and enters the region of negative val-
ues [16], while the coupling-parameter value σ2 corresponds to loss of tangential stability by the lowest-period
periodic orbit built in the synchronous manifold. In the interval σ1 < σ < σ2 of the coupling-parameter
values, the bubbling phenomenon is observed [17]. If two coupled identical oscillators are considered, then
for all coupling-parameter values such that σ > σ1 stable synchronous regime is observed after the transient
process. However, if the control parameters of the coupled oscillators slightly differ, then synchronous behav-
ior can be observed only for coupling-parameter values exceeding the threshold σ1. A similar phenomenon
related to the shift of the synchronization threshold to the coupling-parameter value σ2 is observed for two
identical oscillators in the presence of noise, as is shown in [16]. Therefore, in both cases (the case of slight
nonidentity of coupled partial subsystems or introduction of weak noise to identical systems), the onset time
of the complete-synchronization regime shifts to larger values of the coupling parameter σ and is determined
by the value σ2.

Therefore, the stability interval of the synchronous regime of a network consisting of elements with
slightly nonidentical control parameters gi can be estimated by analyzing a network of identical elements
with the control parameters g = 〈gi〉 in the presence of a noise source. The method of determining the
coupling-parameter variation range in which the synchronous state of the network is stable is reduced to
numerical analysis of Eq. (4), where g = 〈gi〉 is chosen as the control-parameter vector, while Eq. (5)
describing the dynamics of the synchronous state xs(t) of the considered network should be replaced by the
following stochastic differential equation:

ẋs(t) = F(xs(t)) + Dξ(t). (6)

Here Dξ(t) is the introduced noise of intensity D with the variance 〈ξ(t)ξ(t′)〉 = δ(t − t′) and the mean
〈ξ(t)〉 = 0, where δ(t) is a delta function.

Therefore, when simulating the system of equations (4) and (6), we can also use the above-described
calculation of the maximum Lyapunov exponent ΛD(ν) for finding the interval ID

st = (νD
1 , νD

2 ) of the values
of the parameter ν for which the synchronous state of the network is stable. The noise level D used in
Eq. (6) simulates the nonidentity degree of the elements of the considered network. As we show below,
the boundaries νD

1 and νD
2 of the stability interval ID

st tend to their limiting values ν∗
1 and ν∗

2 , respectively,
with increasing noise intensity D. In the case of a complex network, the limiting values ν∗

1 and ν∗
2 of the
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parameter ν are analogs of the above-discussed value σ2 of the coupling parameter in the case of two coupled
chaotic oscillators.

Let us illustrate the proposed method by an example of a network of coupled Rössler systems. The
network dynamics is described by Eq. (1), in which xi = (xi, yi, zi)

T, gi = ωi, F(xi,gi) = F(xi, ωi) =
(−ωiyi − zi, ωixi + 0.165yi, 0.2 + zi (xi − 10))T, and H[x] = (x, 0, 0)T, and a Rössler system with the control
parameters corresponding to the chaotic regime is chosen as the network element:

ẋi = −ωiyi − zi − σ
N∑

j=1

Gijxj , ẏi = ωixi + 0.165yi, żi = 0.2 + zi (xi − 10) (7)

The control parameters of the elements (eigenfrequencies ωi of oscillators) are slightly nonidentical and
uniformly distributed near the mean value ω̄ = 〈ωi〉 = 1 with the maximum deviation ∆ω ≈ 0.1 from the
mean value. When performing numerical calculations, we checked that all elements with slightly nonidentical
parameters demonstrate the same behavior type.

Figure 1 shows the dependence of the largest Lya-
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−0.2

0.0
Λ

2 4 6 8 ν

a b

Fig. 1. Dependence of the maximum Lyapunov ex-
ponent Λ on the parameter ν for a network of
Rössler systems with identical control parameters
ωi ≡ ω̄ = 1. Calculation is performed by numer-
ical simulation of Eqs. (4) and (5). The studied
network demonstrates synchronous behavior in the
interval a < ν < b. The quantity Λ reverses sign
at the points a and b.

punov exponent Λ on the parameter ν, which is calculated
by the Benettin algorithm [15] on the basis of Eqs. (4) and
(5), which simulate the behavior of a network consisting
of coupled identical Rössler systems (eigenfrequencies of
all the elements of network (7) are identical: ωi ≡ ω̄ = 1).
Figure 1 shows the stability interval Ist = (a, b) deter-
mining stable synchronous regime of the dynamics of a
network whose all elements are identical.

To allow for slight nonidentity of the eigenfrequen-
cies of coupled elements of the network, we performed
numerical simulation of Eqs. (4) and (6), which allows us
to find the stability interval ID

st . To calculate the largest
Lyapunov exponent ΛD(ν) characterizing the synchro-
nous dynamics of such a network, noise simulated by the
probabilistic process ξ(t) and uniformly distributed over
the interval (−1, 1) was introduced to Eq. (6) for small
deviations from the synchronous state. Equation (6) was
integrated by the one-step Euler method [18] with the
time step ∆t = 10−6.

Figure 2 shows the fragments of the dependence ΛD(ν) near the threshold values ν1 and ν2. It is
evident that noise addition to Eq. (6) for small deviations from the synchronous regime results in such a
shift of the boundaries νD

1 and νD
2 of the stability interval of the synchronous regime that the value of the

interval ID
st decreases. Therefore, the synchronous regime for a network of slightly nonidentical elements

is stable over a smaller interval of values of the coupling parameter σ compared with a similar network
comprising identical elements.

For further analysis of the considered network, we introduce such a characteristic as the relative
duration LD

st/Lst of the stability interval ID
st , where LD

st = νD
2 −νD

1 and Lst = ν2−ν1. Figure 3 shows LD
st/Lst

as a function of the intensity D of noise introduced to Eq. (6) which simulates the synchronous-state behavior
of network (7) of slightly nonidentical elements. It is clearly seen that the length of the interval LD

st tends
to its limiting length LD∗

st , which is independent of the value of D, as the noise intensity D increases.
By analogy, the boundaries νD

1 and νD
2 of the stability interval ID

st converge to the limiting points ν∗
1 and

ν∗
2 , respectively. Therefore, the obtained interval I∗st of the parameter ν yields an estimate of the interval

in which a network consisting of nonidentical Rössler systems shows stable synchronous dynamics. It is
noteworthy that the obtained interval ID

st is observed for a gradual increase in the noise intensity D up to

829



a) b)

−0.005

−0.001

−0.002

−0.003
−0 010.

0.005

0.000

0.18 0.20 º ν

Λ Λ

0.000

5.40 5.480.22 5.56

Dν1
ν2

D

Fig. 2. Fragments of the dependence of the maximum Lyapunov exponent ΛD on the parameter ν,
which is calculated by the above-mentioned method on the basis of Eqs. (4) and (6) for simulating
a network of Rössler oscillators with slightly nonidentical parameters ωi (dashed line). The noise
intensity is chosen equal to D = 3.5. Similar fragments of the dependence Λ(ν) for a network of
identical elements, calculated by Eqs. (4) and (5) (solid line), are also shown. These fragments
correspond to the vicinities of the points a and b in Fig. 1.

reasonable values of order D = 10–12. At the same time, the proposed method can be applied only for slight
nonidentity of the network elements [16] and, correspondingly, for relatively small noise intensities D. For
example, if the noise intensity D in Eq. (6) is too large, then the amplitude of the term Dξ(t) is comparable
with the signal amplitude xs(t) in the absence of noise, and the network-element dynamics can in fact be

destroyed by noise. As a result, the proposed method will

0.984

0.988

0.992

0.996

0.0 1.5 3.0 4.5 D

Lst
D /L st

6.0

Fig. 3. Dependence of the length LD
st of the sta-

bility interval ID
st of the synchronous regime on

the noise intensity D, which is used in the sys-
tem of equations (4) and (6) for simulating slight
nonidentity of the control parameters ωi of the
network elements. The length LD

st is normalized
to the length Lst of the stability interval Ist of
the synchronous regime for a network consisting
of identical Rössler systems.

yield a fortiori false results.

Let us perform numerical simulation of the dynam-
ics of network (7) of nonlinear elements, which allows us to
directly estimate the regimes observed in the network and
compare the obtained results with the above conclusions
drawn on the basis of consideration of Eqs. (4) and (6). In
the numerical experiments, we consider network (7) con-
sisting of five elements (N = 5). The coupling-coefficient
matrix G is characterized by N real eigenvalues λ1 = 0.0,
λ2 ≈ −1.6, λ3 ≈ −2.0, λ4 ≈ −4.0, and λ5 ≈ −4.4 and has
the following form:

G =





−2 0 0 1 1
0 −3 1 1 1
0 1 −3 1 1
1 0 0 −1 0
1 1 1 0 −3




.

Let us consider the behavior of the synchronization er-
ror [14] for the network on the basis of coupled identical
elements and for a similar network of elements with non-

identical parameters as the coupling parameter σ varies. The synchronization error is the average (over the
time T ) deviation from the synchronous state of the network of elements:
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〈E〉 =
1

T (N − 1)

∑

j>1

t+T∫

t

‖xj − x1‖dt′, (8)

where the vector norm is calculated as ‖x‖ = |x|+ |y|+ |z|. It is evident that the value of 〈E〉 is close to zero
in the regime of complete synchronization, while the synchronization error for the nonsynchronized network
differs from zero. Figure 4 shows the results of numerical simulation of a network consisting of identical
Rössler systems with the eigenfrequencies ω = 1 and a network whose elements are the Rössler systems
with slightly nonidentical control parameters such that the mean value of the eigenfrequency is ω̄ = 1 and
the maximum deviation from the mean frequency is ∆ω = 0.1. The range of the coupling parameter σ, in
which the studied system (7) demonstrates the regime of complete synchronization, decreases in the case
of nonidentical network elements, which is in fairly good agreement with the above analysis of the same
network by the proposed method based on Eqs. (4) and (6).

The problem of how the noise intensity in Eq. (6) is related to the spread of control parameters
of initial network (7) is very important. To answer this question for the analyzed network of slightly
nonidentical coupled elements, we consider a characteristic similar to the relative duration LD

st/Lst of the
stability interval ID

st whose form is shown in Fig. 3. For network (7) of slightly nonidentical Rössler systems,
the stability interval I∆

st corresponding to the stable synchronous dynamics is determined as the interval of
the coupling parameter σ for which synchronization error (8) tends to zero. Figure 5 shows the dependence
of the relative length L∆

st/Lst of the stability interval I∆
st on the maximum deviation ∆ω. The form of the

characteristic corresponds to the dependence of LD
st/Lst on the intensity D of noise used in Eq. (6), which

is shown in Fig. 3. Note that L∆
st tends to the limiting value L∆∗

st , which is independent of ∆ω and coincides
with the corresponding value LD∗

st in Fig. 3, as the nonidentity of the network elements increases. Therefore,
we can state that simulation of the network of coupled nonlinear oscillators with slightly nonidentical control
parameters by introducing noise to the equations describing the synchronous-state stability of a network of
identical elements yields good correspondence between the introduced noise intensity D and the spread ∆ω
of control parameters of the elements. Figure 6 shows the relationship between the noise-intensity level D
and the maximum deviation ∆ω, i.e., the nonidentity level of the coupled elements of network (7).

Thus, in this paper, we presented the method allowing us to estimate the interval of the coupling-
parameter values for which the network of an arbitrary number of slightly nonidentical elements demonstrates
a stable synchronous regime. Note that the proposed results are of general character and can be used for a
wide class of dynamical systems such as, for example, relaxation radioengineering oscillators or systems of
vacuum microelectronics.

Fig. 4. Synchronization error 〈E〉 as a function
of the coupling parameter σ for the network of
Rössler systems with identical control parameters
ωi ≡ ω = 1 (solid line) and for the network of
Rössler systems with slightly nonidentical control
parameters ∆ωi = 0.1 (broken line and circles).
Arrows 1 show the interval of the coupling para-
meter σ, in which a network of identical oscillators
demonstrates a negligibly small value of the syn-
chronization error, and arrows 2 show the inter-
val of σ, in which the synchronization error tends
to zero for a network of slightly nonidentical ele-
ments. When calculating the synchronization er-
ror, we numerically simulated the Rössler-system
network described by Eq. (7).
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Fig. 5. Length L∆
st of the stability interval I∆

st of the
synchronous regime as a function of the value ∆ω
of nonidentity of the control parameters ωi for the
network elements. The length L∆

st is normalized
to the length Lst of the stability interval Ist of
the synchronous regime for a network consisting
of identical Rössler systems.

Fig. 6. Correspondence between the intensity D of
noise used in the system of equations (4) and (6)
and the value ∆ω of nonidentity of control para-
meters for the elements of network (7).
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