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Chaotic synchronization of dynamical systems is
among the important basic phenomena extensively
studied in recent years [1]. This process is also of con-
siderable practical interest (e.g., for data transfer by
means of deterministic chaotic oscillations [2], for
solving some problems in biology [3], etc.). According
to modern classification, there are several types of cha-
otic synchronization of coupled oscillators, including
generalized, phase, lag, and complete synchronization
(see, e.g., [4]). Recently, it has been shown [5, 6] that
the phase, generalized, lag, and complete synchroniza-
tion regimes are closely related, since they are essen-
tially manifestations of the same type of synchronous
dynamics referred to as time scale synchronization. The
character of a particular synchronous regime (phase,
lag, or complete) is determined by the number of syn-
chronized time scales introduced by means of a contin-
uous wavelet transform [7].

In this Letter, we will analyze how the time shift
between synchronized unstable saddle periodic orbits
(corresponding to the equiphase saddle 
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 cycles in
the general phase space) changes in the phase spaces of
interacting chaotic oscillators depending on the param-
eter of coupling between the interacting subsystems.

Unstable saddle periodic orbits [8] play an impor-
tant role in the process of chaotic synchronization (see,
e.g., [9–11]). An autonomous chaotic oscillator is char-
acterized by a set of unstable saddle periodic orbits of
various periods, which are incorporated into the chaotic
attractor. For a small coupling parameter, each of the
two mutually coupled chaotic oscillators with slightly
different parameters is characterized by its own set of
unstable saddle orbits. The saddle orbits with the same
topological period 
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 have different temporal periods 

 

T
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(the time required for the imaging point to return to a
fixed point of the orbit) and the corresponding different
frequencies. Accordingly, unstable two-dimensional
toruses exist in the complete phase space formed by the
partial phase spaces of the interacting oscillators.

The onset of phase synchronization is accompanied
by trapping of the frequencies of unstable periodic
orbits (for more detail, see [12]) and by the appearance
of resonance saddle cycles (either equiphase or not) on
the two-dimensional toruses. It was shown [12] that
only equiphase resonance saddle 
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 cycles (where 

 

m

 

,

 

n

 

 = 1, 2, …) exist in a broad range of variation of the
coupling parameter, including the regions of phase syn-
chronization and lag synchronization. All other reso-
nance saddle cycles (including nonequiphase 
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cycles) exist in a relatively small interval of the cou-
pling parameter and break when this parameter
approaches a threshold of the lag synchronization.

There is still an open question concerning the
behavior of a time shift between saddle orbits of the par-
tial systems forming a resonance cycle in the general
phase space. The interest in answering this question has
been inspired by the results obtained recently [13] in the
study of a phase shift between synchronized spectral
components of interacting chaotic oscillators.

In the regime of lag synchronization, whereby the
state vector of one of the two coupled systems has a cer-
tain time lag relative to the state vector of another sys-
tem, 
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), the time shift between the saddle
cycles with topological periods 

 

m

 

 in the coupled sys-
tems (corresponding to an equiphase resonance 
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cycle in the general phase space) also proves to be 

 

∆

 

t

 

.
However, it is still unclear how this time shift behaves
in the regime of phased synchronization.

In order to analyze this problem, let us consider two
mutually coupled Rössler systems occurring in the
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Abstract

 

—The shift 
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t

 

 between unstable periodic orbits of coupled oscillators occurring in the chaotic syn-
chronization regime has been studied. It is shown that this time shift is the same for all equiphase orbits with
various topological parameters and depends on the coupling parameter 

 

ε

 

. This dependence obeys the universal
power law 
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 ~ 
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n

 

 with an exponent of 
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= –1. 
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dynamical chaos regime:

(1)

where 

 

ε

 

 is the coupling parameter, 

 

ω

 

1

 

 = 0.98, and 

 

ω

 

2

 

 =
1.03. The values of other control parameters were
selected as follows:

 

 a 

 

= 0.22, 

 

p 

 

= 0.1, and

 

 c

 

 = 8.5. It is
known [14] that two coupled Rössler systems (1) with
0.04 

 

�

 

 

 

ε

 

 

 

�

 

 0.14 occur in the regime of phase synchro-
nization; for 

 

ε

 

 > 0.14, the same systems exhibit lag syn-
chronization.

ẋ1 2, ω1 2, y1 2,– z1 2, ε x2 1, x1 2,–( ),+–=

ẏ1 2, ω1 2, x1 2, ay1 2, ε y2 1, y1 2,–( ),+ +=
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We have considered equiphase unstable saddle peri-
odic orbits with topological periods, incorporated into
chaotic attractors of the interacting chaotic oscillators.
The system of equations (1) was numerically integrated
using the fourth-order Runge–Kutta method. Unstable
saddle periodic orbits were separated using the 

 

SD

 

method as described by Schmelcher 

 

et al.

 

 [15, 16]. In
order to study the time shift between the unstable peri-
odic cycles, it is necessary to find synchronized orbits
simultaneously in both coupled systems. For this rea-
son, the 

 

SD

 

 method was applied in a six-dimensional
phase space formed by the partial three-dimensional
phase spaces of the interacting Rössler oscillators.

Figure 1 shows the time series 

 

x

 

1, 2

 

(

 

t

 

) corresponding
to a saddle equiphase resonance 

 

m

 

:

 

m

 

 cycle with a topo-
logical period of 

 

m 

 

= 2 for a coupling parameter of 

 

ε

 

 =
0.07, whereby coupled systems (1) exhibit phase syn-
chronization. As can be seen, there is a certain time
shift between the two curves. Let us consider the given
equiphase cycle for various values of the coupling
parameter. As 

 

ε

 

 increases, the time shift 

 

∆

 

t

 

 between the
synchronized orbits decreases; upon the onset of a lag
synchronization regime, the time shift, as was noted
above, coincides with the time lag between the state
vectors of the interacting Rössler oscillators. It is
important to note that the dependence of 

 

∆

 

t

 

 on 

 

ε

 

 obeys
a power law,

, (2)

where 

 

n 

 

= –1 in the entire range of variation of the cou-
pling parameter, in which the equiphase resonance sad-
dle 2 : 2 cycle exists. In other words, this relationship is
valid in both lag and phase synchronization regimes.
An analogous behavior is observed for all equiphase
synchronized unstable saddle orbits with other topolog-
ical periods 

 

m

 

. It should emphasized that the time shift

 

∆

 

t

 

(

 

ε

 

) is the same for all equiphase saddle cycles, irre-
spective of their topological periods 

 

m

 

.
Figure 2 shows a double logarithmic plot of the time

shift 

 

∆

 

t

 

 between synchronized unstable equiphase sad-
dle orbits with the topological periods 

 

m

 

 = 1 (

 

1

 

), 2 (

 

2

 

),
and 3 (

 

3

 

) versus the coupling parameter 

 

ε

 

. From this
plot, it is clearly seen that, first, the time shift 

 

∆

 

t

 

between the unstable periodic trajectories in the first
and second coupled systems as a function of 

 

ε

 

 is
described by the power law (2) with the exponent n =
−1, irrespective of the topological period. For simplic-
ity, Fig. 2 presents the data only for three equiphase
saddle cycles with the minimum topological periods m,
but the time shift for the cycles with higher topological
periods behaves in the same manner. Second, the time
shift ∆t for a fixed coupling parameter ε is the same for
all synchronized equiphase orbits.

Thus, we have analyzed, in a particular case of two
mutually coupled Rössler systems, the time shift
between synchronized equiphase unstable saddle orbits
incorporated into chaotic attractors of coupled oscilla-
tors. It is demonstrated that the dependence of this time
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Fig. 1. Time series corresponding to an equiphase reso-
nance saddle m:m cycle with a topological period of m = 2
for a coupling parameter of ε = 0.07 corresponding to a
phase synchronization regime. The solid and dashed curves
show the saddle orbits in the first and second system,
respectively.
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Fig. 2. A double logarithmic plot of the time shift ∆t
between synchronized saddle periodic orbits versus the cou-
pling parameter ε of coupled Rössler systems (1), for the
orbits with the topological periods m = 1 (1), 2 (2), and
3 (3). The dashed line corresponds to power law (2) with an
exponent of n = –1.
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shift on the coupling parameter ε is the same for all
cycles, irrespective of their topological periods, and is
described by the universal power law ∆t ~ ε–n with an
exponent of n = –1.

It should be noted that the obtained results agree
well with the conclusions [13] concerning the phase (or
time) shift between synchronized spectral components
of the Fourier spectra of mutually coupled chaotic
oscillators in the course of lag synchronization. At the
same time, the problem of interrelation between the
behavior of the Fourier components and the dynamics
of saddle orbits incorporated into the given chaotic
attractor requires further investigation.
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