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Study of the complicated chaotic behavior of dis-
tributed systems requires using special methods for
analysis of the dynamics of coherent structures, since
classical linear methods of analysis (for example, spec-
tral) do not provide maximum information about pro-
cesses taking place in nonlinear systems. Below we
consider application of the bicoherent wavelet transfor-
mation, a nonlinear method originally proposed in [1],
to an analysis of complicated processes in distributed
systems.

Developed quite recently, the wavelet analysis
offers a powerful method for studying the dynamics of
distributed systems and draws increasing attention of
researchers [2–4]. Using this method, it is possible to
resolve the dynamics on various scale levels represent-
ing the structure of signals. The wavelet transform
eliminates the need of expanding signals into harmonic
series, which is the main disadvantage of the Fourier
transformation applied to the analysis of turbulence and
chaos because nonlinear equations describing such
complicated phenomena in distributed systems possess
no intrinsic harmonic modes.

Bisector (bicoherent) representation characterizes
phase relationships (phase coupling) between various
frequency components of a signal. We can speak of a
phase coupling when the analyzed signal simulta-
neously contains two frequencies, 
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, the sum
(or difference) of which, as well as the sum of the cor-
responding phases 
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 remain constant over a cer-
tain period of time. Using bicoherent wavelets, it is pos-
sible to reveal the intrinsic structure of spatial and tem-
poral data, determined by the phase coupling, and study
the time variation of this structure.

The mutual wavelet bispectrum (wavelet bicoher-
ency) is defined as
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lyzed signals; 
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 are the corresponding wavelet
spectra of these signals [2, 4]; 
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 is the time interval for
which the mutual wavelet bispectrum is analyze;, and
the asterisk denotes a complex conjugate. The wavelet
bispectrum is a measure of the phase coupling over the
time interval 
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, which is manifested between compo-
nents of the wavelet spectrum of the 
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f

 

1

 

 and 1/

 

f

 

2

 

 and the 

 

h

 

(

 

t

 

) signal on a time
scale of 1/
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An important characteristic of the bicoherent wave-

let transformation is the bicoherency sum defined as
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where summation is performed over all frequencies
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 is the number
of terms in the sum. Also introduced is the total bico-
herency defined as
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where the sum is taken over all analyzed frequencies 
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 being the total number of terms in this sum.

In this study, we apply the bicoherent wavelet trans-
formation to analysis of the formation and interaction
of coherent structures in an electron beam with virtual
cathode (VC) in a diode gap with inhomogeneous ion
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Abstract

 

—The supercritical electron beam structure formation in a diode gap with inhomogeneous ion back-
ground density were analyzed by the bicoherent wavelet transformation method. By studying the wavelet bico-
herency of the spatiotemporal data about oscillations in the system, it is possible to effectively reveal and ana-
lyze local spatial structures formed in the electron beam. 
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background, which was studied in detail previously [5, 6].
This system offers the simplest model of a vircator with
plasma anode [7] which allows, under certain condi-
tions, to increase the VC generation frequency [5]. It
was demonstrated [6] that the system exhibits a compli-
cated chaotic dynamics of the electron beam.

The system under consideration represents a diode
gap with strongly inhomogeneous distribution of an
immobile ion background in a region near the injection
plane (anode plasma). The control quantities are the
Pierce parameter 
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 (proportional to the beam
current), the ratio 
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 of the anode plasma density
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 to the space charge density 
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 of the electron beam,
and the coordinates 
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 (beginning) and 
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 (end) of the
anode plasma layer; 
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p

 

 is the plasma frequency of the
electron beam, 

 

L

 

 is the length of the interaction space,
and 

 

v

 

0

 

 is the unperturbed electron flow velocity. For

 

α

 

 > 

 

αcr , a single-stream state of the beam becomes
unstable with respect to small perturbations in the
charge density and the system features the VC forma-

tion [8]. Nonstationary processes in the system were ana-
lyzed by a numerical method of macroparticles [9, 10].

As was demonstrated previously [5, 6], the system
under consideration exhibits a large set of dynamic
regimes depending on the density n of the near-anode
ion background and the beam current parameter α.
When the ion density exceeds a certain critical value ncr
(depending on the Pierce parameter), the system exhib-
its a transition from regular and weakly stochastic VC
oscillations via intermittency to developed chaotic
oscillations with a base frequency significantly higher
that of the VC oscillations at n < ncr . For a significantly
inhomogeneous ion background with n > 2.5–3.5, the
system is characterized by irregular oscillations with a
continuous spectrum exhibiting no selected frequency
components.

Below we consider a system with the following val-
ues of the control parameters: α = 2.125π, n = 4.0,
xp1 = 0.05, and xp2 = 0.25. The system with these char-
acteristics exhibits a developed spatiotemporal pattern
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Fig. 1. The power spectra P(f), phase portraits, and time patterns of (a) the electric field potential φ and(b) space charge density ρ
in the diode gap section with a coordinate x = 0.25L; (c) spatiotemporal pattern of the electron flow dynamics in the case studied
(thick solid curve represents the trajectory of a particle trapped in a potential well).



562

TECHNICAL PHYSICS LETTERS      Vol. 28      No. 7      2002

KHRAMOV et al.

of chaotic oscillations. Figures 1a and 1b show the power
spectra P(f) (plotted in a nonlogarithmic scale), phase
portraits (reconstructed using the Takens method [11]),
and time variation of the electric field potential ϕ(t)
(Fig. 1a) and space charge density ρ(t) (Fig. 1b) in the
region of oscillating VC (x/L = 0.25). As can be seen,
the temporal dynamics of the system is strongly irregu-
lar. The potential oscillations in the VC region show a
more regular pattern as compared to that of the space
charge density: the ϕ(t ) spectrum has a base frequency
(f0) and the phase portrait exhibits a structure related
to the phase trajectory rotation with a time scale of
T ≈ 1/f0 . For this reason, we will use the ϕ(t) oscilla-
tions for an analysis of processes in the system studied.
It should be noted that the base frequency f0 of the
power spectrum is the same for oscillations in various
diode cross sections.

Let us determine the total bicoherency (3) of data for
the potential oscillations in vacuous diode sections x
and a harmonic signal with a frequency corresponding
to the base frequency f0 of the power spectrum. This
implies that we select signal h in relation (1) in the form
of asin2πf0t, while signal g represents the potential oscil-
lations ϕ(t, x). The calculations were performed using a
base wavelet transformation of the Morlet type [12],
which provides for a convenient interpretation of the
results [4]. The results of calculations of the total bico-
herency B(x) as a function of the coordinate x are pre-
sented in Fig. 2a. As can be seen, the maximum total
bicoherency (i.e., the maximum phase coupling
between potential oscillations and the main time scale
dynamics in the system) corresponds to the potential
oscillations in the region of x/L ≈ 0.25. This result
implies that the basic spatiotemporal structure deter-
mining the main features in behavior of the system is
localized at x/L ~ 0.25.

Now let us calculate the bicoherency sum BΣ( f )
according to (2) using the spatiotemporal data for the
potential oscillations in the diode gap. The signal h is
selected in the form of potential oscillations
ϕ(t, 0.25/L) in the region of maximum total bicoher-
ency (Fig. 2a) and the signal g represents the potential
oscillations ϕ(t, x) in various sections of the diode gap.
The results are presented in Fig. 2b in the form of a pro-
jection of the BΣ surface onto the coordinate plane (x, f),
where x is the diode section coordinate and f is the fre-
quency for which the bicoherency sum is determined.
Different values of the function of two variables
BΣ(x, f ) in Fig. 2b are represented by variable intensity
of the projection color. As can be seen, the BΣ(x, f ) sur-
face contains two clearly distinguished regions where
the wavelet bicoherency sharply increases. On the (x, f)
plane, these regions are located in the vicinity of x ~
0.2–0.4, f ~ 1.6 and x ~ 0.1–0.15, f ~ 0.4. The magnitude
of bicoherency in the first of these regions is signifi-
cantly greater than that in the second region. The two
regions can be related to two coherent structures deter-
mining the electron beam dynamics in the system stud-
ied. Using the data obtained, it is possible to estimate
the characteristic time scales and spatial localization of
these structures.

In order to verify the results of the bicoherent wave-
let analysis, we have studied physical processes in an
electron beam (see also [6]). Figure 1c shows a spa-
tiotemporal diagram of the electron beam dynamics
under the condition studied, in which each curve repre-
sents a charged particle trajectory. The diagram extends
over three characteristic periods of the VC oscillations,
which corresponds to a time interval of t ~ 3/ f0. As can
be seen, for large n values, the VC forms outside the ion
layer and permanently exists in the flow. The minimum
potential depth performs irregular oscillations at a base
frequency f0. At the same time, a potential well is
formed between the injection plane and VC, with an
extremum at x ~ 0.1. This well traps either particles
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Fig. 2. (a) The plot of a total bicoherency B versus spatial
coordinate x for the signals h(t) = asin(2πf0t) and g(t) =
ϕ(t, x); (b) the projection of a bicoherent sum BΣ(x/L, f )
constructed for the potential oscillations in various sections
of the diode gap (different BΣ values are represented by
variable intensity of the projection color.
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reflected from VC (and possessing small velocity on
approaching the exit plane) or injected particles having
lost the initial velocity in a strong retarding VC field.
Trapped particles oscillating in the potential well are
clearly distinguished on the spatiotemporal diagram
(see Fig. 1c, where the trapped particle trajectory is
depicted by a thick solid line). Thus, the beam features
the formation of two electron bunches representing two
self-sustained structures: VC proper and a metastable
structure comprised of long-lived particles occurring in
the interaction space, trapped in the potential well
between the injection plane and VC. The spatial local-
ization and characteristic time scales of both structures
coincide with those determined by methods of the bico-
herent wavelet transformation.

It should be noted that the spatiotemporal dynamics
of the system studied is similar to the flow dynamics in
a generator with VC of the triode type [7, 13, 14], which
also exhibits a two-humped potential profile. The flow
features a self-sustained vortex structure of trapped par-
ticles. The interaction between VC and this vortex gives
rise to complicated flow dynamics analogous to that
described in [15].

Thus, the chaotic dynamics and structure formation
in an electron beam with virtual cathode in a diode with
strongly inhomogeneous ion background were ana-
lyzed by the bicoherent wavelet transformation
method. Using this method for the analysis of spa-
tiotemporal data, it is possible to effectively reveal
coherent structures determining the dynamics of sys-
tems featuring developed spatial chaos.
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